Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Czechoslovak Mathema...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Czechoslovak Mathematical Journal
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regularity in torsion-free abelian groups

Regularität in torsionsfreien abelschen Gruppen
Authors: Müller, Edgar; Mutzbauer, Otto;

Regularity in torsion-free abelian groups

Abstract

Eine Untergruppe \(B\) einer torsionsfreien abelschen Gruppe \(A\) heißt regulär (kritisch regulär) falls \(t^ B(b) = t^ A(b)\) für alle \(b\in B\) (falls für alle Typen \(t\) gilt: \(B(t) \setminus B^*(t)_ * \subset A(t)\setminus A^*(t)_ *\)). Die Untergruppe \(B\) heißt stark regulär, falls \(B\) eine reguläre und eine kritisch reguläre Untergruppe von \(A\) ist. \(B\) heißt Quasi-Summand von \(A\), falls es eine Untergruppe \({\mathcal D}\subset A\) gibt, so daß der Exponent \(\text{exp}(A/(B\oplus {\mathcal D}))\) endlich ist. Quasi-Summanden torsionsfreier abelscher Gruppen \(A\) sind stark regulär. Insbesondere sind direkte Summanden bzw. Untergruppen von endlichem Exponenten stark regulär. Die Typenuntergruppen \(A(t)\), \(A^*(t)\) und \(A^*(t)_ *\) sind stets stark reguläre Untergruppen in torsionsfreien abelschen Gruppen. Satz 1. In fast vollständig zerlegbaren Gruppen endlichen Ranges sind die stark regulären Untergruppen genau die Quasi-Summanden. Umgekehrt sind torsionsfreie abelsche Gruppen endlichen Ranges, deren stark reguläre Untergruppen allesamt Quasi-Summand sind, fast vollständig zerlegbar. Korollar 2. In vollständig zerlegbaren Gruppen endlichen Ranges mit linear geordneter Typenmenge sind die regulären Untergruppen genau die Quasi-Summanden. Umgekehrt sind die torsionsfreien abelschen Gruppen endlichen Ranges, deren reine Untergruppen allesamt Quasi- Summanden sind, vollständig zerlegbar mit linear geordneter Typenmenge.

Keywords

Torsion-free groups, finite rank, completely decomposable groups, Direct sums, direct products, etc. for abelian groups, quasi summands, Subgroups of abelian groups, torsionfree Abelian groups of finite rank, types, regular subgroups

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
bronze