
In this paper, we firstly consider extended degenerate central factorial numbers of the second kind and provide some properties of them. We then introduce unified degenerate central Bell polynomials and numbers and investigate many relations and formulas including summation formula, explicit formula and derivative property. Moreover, we derive several correlations for the fully degenerate central Bell polynomials associated with the degenerate Bernstein polynomials and the degenerate Bernoulli, Euler and Genocchi numbers.
Central factorial numbers, Special numbers, Special polynomials, Stirling numbers of the first kind, Bernoulli, Degenerate central bell polynomials, Numbers, Central bell polynomials, algebra_number_theory, Mathematics
Central factorial numbers, Special numbers, Special polynomials, Stirling numbers of the first kind, Bernoulli, Degenerate central bell polynomials, Numbers, Central bell polynomials, algebra_number_theory, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
