
A new type of ordinary differential equation is introduced and discussed, namely, the time-dependent order ordinary differential equations. These equations can be solved via fractional calculus and are mapped into Volterra integral equations of second kind with singular integrable kernel. The solutions of the time-dependent order differential equations smoothly deforms solutions of the classical integer order ordinary differential equations into one-another, and can generate or remove singularities. An interesting symmetry of the solution in relation to the Riemann zeta function and Harmonic numbers was also proved.
applied_mathematics, Voltera equation, fractional differential equation, Volterra equation, Fractional ordinary differential equations, variable order derivative, singular integrable kernel
applied_mathematics, Voltera equation, fractional differential equation, Volterra equation, Fractional ordinary differential equations, variable order derivative, singular integrable kernel
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
