Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology
Article . 2007 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Ecology
Article . 2007
versions View all 2 versions
addClaim

EXPANDING THE LIMITS OF THE POLLEN-LIMITATION CONCEPT: EFFECTS OF POLLEN QUANTITY AND QUALITY

Authors: Marcelo A, Aizen; Lawrence D, Harder;

EXPANDING THE LIMITS OF THE POLLEN-LIMITATION CONCEPT: EFFECTS OF POLLEN QUANTITY AND QUALITY

Abstract

Pollination commonly limits seed production, as addition of pollen to stigmas often increases fecundity. This response is usually interpreted as evidence that plants' stigmas receive too few pollen grains to maximize ovule fertilization (quantity limitation); however, many genetic studies demonstrate that poor-quality pollen can also reduce seed production (quality limitation). We explore both aspects of pollen limitation theoretically with a dose-response model that incorporates a saturating negative-exponential relation of seed production to pollen receipt. This relation depends on aspects of ovule production, pollen import, pollen-pistil interactions and seed development, all of which can contribute to pollen limitation. Our model reveals that quantity limitation is restricted to the lowest range of pollen receipt, for which siring success per pollen grain is high, whereas quality limitation acts throughout the range of pollen receipt if plants do not import the highest-quality pollen. In addition to pollinator availability and efficiency, quantity limitation is governed by all post-pollination aspects of seed production. In contrast, quality limitation depends on the difference in survival of embryos sired by naturally delivered pollen vs. by pollen of maximal quality. We briefly illustrate the distinction between these two components of pollen limitation with results from the mistletoe Tristerix corymbosus. Our model also shows that the standard pollen-supplementation technique neither estimates the total intensity of pollen limitation nor distinguishes between its quantity and quality components. As an alternative, we propose a methodological protocol that requires both measurement of seed production following excess pollination with only outcross pollen and quantification of the dose-response relation of seed output to pollen receipt. This method estimates both the total extent of pollen limitation and its two components. Finally, we consider the influences on quantity and quality limitation, which reveals that quantity limitation probably occurs much less often than has been inferred from pollen-supplementation experiments. These interpretations suggest that an expanded perspective that recognizes the fecundity consequences of pollination with poor-quality pollen would promote ecological understanding of pollen limitation.

Keywords

Magnoliopsida, Reproduction, Pollen, Models, Biological, Ecosystem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    435
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
435
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!