Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Ecology
Article . 2005 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 1 versions
addClaim

EXTINCTION RISK OF HETEROGENEOUS POPULATIONS

Authors: Fox, Gordon A.;

EXTINCTION RISK OF HETEROGENEOUS POPULATIONS

Abstract

The extinction of small populations is a stochastic process, affected by both environmental variation and chance variation in the fates of individuals (demographic stochasticity). Here I examine how population extinction risk is affected by variation in the underlying individual phenotypes, using a branching-process approach. I define the long-term individual extinction risk as the chance of ultimately leaving no descendants, and the cumulative individual extinction risk as the chance of leaving no descendants by a specified time. I use these to show that if there is a phenotypic correlation between parents and their offspring, variation in these quantities always reduces both the long- and short-term population extinction risk. Such variation in individual extinction risk arises from individual variation in demographic parameters and may have both genetic and environmental causes. Using a well-known approximation of the difference between the log arithmetic and log geometric means, I derive expressions for the sensitivity and elasticity of the approximate log extinction risk to changes in the mean and variance of the individual extinction risk, and to changes in population size. One conclusion is that increasing the variance among individuals in extinction risk can sometimes be at least as important in reducing population extinction risk as increasing the population size itself. These analyses also point to reasons why changes in environmental factors (e.g., toxicants) or management practices may have either larger or smaller effects than would be anticipated by considering the change in the mean risk alone.

Country
United States
Keywords

individual phenotypes, 570, Medical Sciences, Conservation biology, heterogeneouspopulations, extinction risk, stochastic demography, 300, Medicine and Health Sciences, demographic stochasticity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!