Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Решения задач регрессии с использованием Ð½ÐµÑ‡ÐµÑ‚ÐºÐ¸Ñ Ð¼Ð½Ð¾Ð¶ÐµÑÑ‚Ð²

выпускная квалификационная работа магистра

Решения задач регрессии с использованием Ð½ÐµÑ‡ÐµÑ‚ÐºÐ¸Ñ Ð¼Ð½Ð¾Ð¶ÐµÑÑ‚Ð²

Abstract

Нечёткие множества являются одним из наиболее емких способов описания неопределённости данных. Кроме прочего, в работе содержится подробный обзор данного математического объекта, а также особенности его практического применения. В качестве практического примера в работе исследуются данные по управлению шаговыми двигателями (ШД) в режиме дробления шага. Дробление является источником неточности, затрудняя исследование и прогнозирование. Рассматриваются данные полученные при различной дискретности обработки полного шага (1/8,1/64,1/256). Отдельный интерес также представляет сравнение полного хода ШД вперед и назад в ходе одного непрерывного замера, так как из-за упомянутой неточности ШД не возвращается в исходное положение. В работе приведен метод построения нечётких данных на основе четких, относящихся к конкретному классу. Введена метрика степени учета специфики данных. Представлен способ прогнозирования положения вала ШД с помощью классических методов регрессионного анализа, примененных к нечётким данным. Приведен способ анализа степени неопределенности результата с помощью получения внутренней и внешней интервальных оценок из нечёткого числа с последующим вычислением меры Жаккара для полученного твина.

Fuzzy sets are one of the most capacious ways to describe data uncertainty. Among other things, the work provides a detailed overview of this mathematical object, as well as the features of its practical application. As a practical example, the work investigates stepper motor (SM) control data in pitch crushing mode. Pitch crushing is a source of inaccuracy, making research and prediction difficult. Data obtained at different discretization of full step processing (1/8,1/64,1/256) are examined. Comparison of the total forward and backward travel of the drive during one continuous measurement is also of particular interest, since the drive does not return to the initial position due to the mentioned inaccuracy. In this work, a method of constructing fuzzy data based on crisp class-specific data is presented. A metric for the degree of data specificity is introduced. A method of predicting the position of the shaft of the SM using classical regression analysis methods applied to fuzzy data is presented. A method of analyzing the degree of uncertainty of the result by obtaining internal and external interval estimates from a fuzzy number and then calculating the Jaccard measure for the obtained tween is presented.

Keywords

fuzzy sets, data analisys, регрессионный анализ, анализ данныÑ, шаговый двигатель, нечёткие числа, нечёткие множества, regression analisys, fuzzy numbers, stepper motor

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Beta
sdg_colorsSDGs:
Related to Research communities
Upload OA version
Are you the author? Do you have the OA version of this publication?