
Ð”Ð°Ð½Ð½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена реализации метода иÑключений Фурье-Моцкина и полиномиального алгоритма проверки ÑовмеÑтноÑти и Ñ€ÐµÑˆÐµÐ½Ð¸Ñ ÑиÑтем Ñтрогих и неÑтрогих линейных неравенÑтв в рациональных чиÑлах. Ð’ ходе данной работы решалиÑÑŒ Ñледующие задачи:   1. ПровеÑти обзор извеÑтных алгоритмов Ñ€ÐµÑˆÐµÐ½Ð¸Ñ Ð´Ð°Ð½Ð½Ð¾Ð¹ задачи и Ñмежных задач, а также их реализаций.   2. Модифицировать метод иÑключений Фурье-Моцкина Ð´Ð»Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ñ‹ Ñ ÑиÑтемами Ñтрогих и неÑтрогих линейных неравенÑтв и раÑширить его до их решениÑ.   3. Ð’Ñ‹Ñвить полиномиальный алгоритм проверки ÑовмеÑтноÑти Ñтрогих и неÑтрогих линейных неравенÑтв и раÑширить его до их решениÑ.   4. Реализовать выбранные алгоритмы.   5. ПротеÑтировать реализованные алгоритмы и ÑкÑпериментально Ñравнить их работу Ñ Ð´Ñ€ÑƒÐ³Ð¸Ð¼Ð¸ реализациÑми. Ð’ работе приводитÑÑ Ñ„Ð¾Ñ€Ð¼Ð°Ð»ÑŒÐ½Ð¾Ðµ опиÑание модификации метода иÑключений Фурье-Моцкина Ð´Ð»Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ñ‹ Ñ ÑиÑтемами, Ñодержащими Ñтрогие неравенÑтва, а также раÑширение данного метода и полиномиального алгоритма проверки ÑовмеÑтноÑти ÑиÑтем Ñтрогих и неÑтрогих линейных неравенÑтв Ð´Ð»Ñ Ñ€ÐµÑˆÐµÐ½Ð¸Ñ Ñ‚Ð°ÐºÐ¸Ñ… ÑиÑтем. Ð’ результате работы данные алгоритмы были реализованы на Ñзыке Java, в виде позволÑющем работать Ñ Ñ€Ð°Ñ†Ð¸Ð¾Ð½Ð°Ð»ÑŒÐ½Ñ‹Ð¼Ð¸ чиÑлами произвольной точноÑти.
The given work is devoted to the implementation of the Fourier-Motzkin elimination method and polynomial algorithm for checking the consistency and solving systems of strict and nonstrict linear inequalities in rational numbers. In the course of this work the following tasks were solved: Â Â 1. Review the known algorithms for solving this problem and related problems, as well as their implementations. Â Â 2. Modify Fourier-Motzkin elimination method of exceptions to work with systems of strict and nonstrict linear inequalities and extend it to their solution. Â Â 3. Identify a polynomial algorithm for checking the consistency of strict and nonstrict linear inequalities and extend it to their solution. Â Â 4. Implement the selected algorithms. Â Â 5. Test the implemented algorithms and experimentally compare their performance with other implementations. The paper provides a formal description of the modification of Fourier-Motzkin elimination method to work with systems containing strict inequalities, as well as an extension of this method and polynomial algorithm for checking the consistency of systems of strict and nonstrict linear inequalities to solve such systems. As a result, these algorithms were implemented in Java language, in a form that allows to work with rational numbers of arbitrary precision.
systems of strict and nonstrict linear inequalities, ÑеÑение ÑиÑÑем линейнÑÑ Ð½ÐµÑавенÑÑв, ÑиÑÑÐµÐ¼Ñ ÑÑÑÐ¾Ð³Ð¸Ñ Ð¸ неÑÑÑÐ¾Ð³Ð¸Ñ Ð»Ð¸Ð½ÐµÐ¹Ð½ÑÑ Ð½ÐµÑавенÑÑв, solution of systems of linear inequalities, FourierâMotzkin elimination method, меÑод иÑклÑÑений ФÑÑÑе-ÐоÑкина
systems of strict and nonstrict linear inequalities, ÑеÑение ÑиÑÑем линейнÑÑ Ð½ÐµÑавенÑÑв, ÑиÑÑÐµÐ¼Ñ ÑÑÑÐ¾Ð³Ð¸Ñ Ð¸ неÑÑÑÐ¾Ð³Ð¸Ñ Ð»Ð¸Ð½ÐµÐ¹Ð½ÑÑ Ð½ÐµÑавенÑÑв, solution of systems of linear inequalities, FourierâMotzkin elimination method, меÑод иÑклÑÑений ФÑÑÑе-ÐоÑкина
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
