Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Моделирование региональной дифференциации по показателям устойчивого развития

выпускная квалификационная работа магистра

Моделирование региональной дифференциации по показателям устойчивого развития

Abstract

Целью работы является анализ и разработка методики кластеризация регионов по показателям устойчивого развития. Были решены следующие задачи: – разработка комплексного подхода кластеризации регионов по показателям устойчивого развития; – регрессионное моделирование и прогнозирование значений показателей; – применение разработанной методики кластеризации, описание и аналитика результатов. Актуальность темы обусловлена важной ролью выбора наилучшей стратегии управления территорией для достижения целей устойчивого развития. Стремительное развитие городов и регионов может привести к негативным последствиям, таким как экологические проблемы, социальные протесты и экономический спад. Это может быть решено с помощью кластеризации территорий. Источниками информации выступили официальные данные с сайта Росстат и ЕМИСС. Предложена методика оценки реализации целей устойчивого развития, результаты разработки которой могут быть применены для принятия управленческих решений. Сбор и первичная обработка данных проводилась с помощью пакета MS Office (Excel). Обработка данных, регрессионный и кластерный анализы осуществлялся автоматизированными средствами Python.

The purpose of the work is to analyze and develop a methodology for clustering regions according to indicators of sustainable development. The research set the following goals: – development of an integrated approach to clustering regions according to indicators of sustainable development; – regression modeling and forecasting of indicator values; – application of the developed clustering methodology. The relevance of the topic is due to the important role of choosing the best strategy for managing the territory to achieve sustainable development goals. The rapid development of cities and regions can lead to negative consequences, such as environmental problems, social protests and economic downturn. This can be achieved by clustering territories. The sources of information were official data from the Rosstat and EMISS website. A methodology for assessing the implementation of the Sustainable Development Goals is proposed, the results of which can be applied to make managerial decisions. Data collection and primary processing was carried out using the MS Office (Excel) package. Data processing and cluster analyses were carried out using auto-mated Python tools.

Keywords

устойчивое развитие, показатели целей устойчивого развития, регрессионный анализ, sustainable development, regression analysis, the method of self-organizing Kohonen maps, метод ÑÐ°Ð¼Ð¾Ð¾Ñ€Ð³Ð°Ð½Ð¸Ð·ÑƒÑŽÑ‰Ð¸Ñ ÑÑ карт ÐšÐ¾Ñ Ð¾Ð½ÐµÐ½Ð°, indicators of the sustainable development goals, кластеризация, clustering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?