Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Исследование методов идентификации фаз потребителей в низковольтной электрической сети по данным Ð¸Ð½Ñ‚ÐµÐ»Ð»ÐµÐºÑ‚ÑƒÐ°Ð»ÑŒÐ½Ñ‹Ñ Ð¿Ñ€Ð¸Ð±Ð¾Ñ€Ð¾Ð² учёта

выпускная квалификационная работа магистра

Исследование методов идентификации фаз потребителей в низковольтной электрической сети по данным Ð¸Ð½Ñ‚ÐµÐ»Ð»ÐµÐºÑ‚ÑƒÐ°Ð»ÑŒÐ½Ñ‹Ñ Ð¿Ñ€Ð¸Ð±Ð¾Ñ€Ð¾Ð² учёта

Abstract

Данная работа посвящена анализу особенностей функционирования распределительных сетей низкого напряжения и разработке алгоритма идентификации фаз потребителей по данным интеллектуальных приборов учёта. Задачи, которые решались в ходе исследования: 1. Моделирование функционирования распределительной сети и анализ значения напряжения и количества потерь электроэнергии при различном уровне несимметрии. 2. Рассмотрение существующих методов идентификации фаз потребителей. 3. Анализ мирового опыта разработки алгоритма идентификации фаз. 4. Рассмотрение методов, применимых для реализации алгоритма идентификации фаз. 5. Настройка параметров разработанного алгоритма. Практическая реализация оценки потерь напряжения и мощности при исследовании несимметричных режимов была произведена на примере реального участка распределительной сети низкого напряжения. В результате был разработан алгоритм идентификации фаз потребителей, представляющий собой комбинацию таких методов как вейвлет-преобразование и модель гауссовой смеси.

The given work is devoted to analysing the peculiarities of low-voltage distribution network and creating an algorithm for identifying the phases of consumers using data from smart metering devices. The research set the following goals: 1. Modelling of distribution network operation and analysis of voltage value and amount of power losses at different level of asymmetry. 2. Consideration of existing methods for identifying consumer phases. 3. Analysis of the world experience in the development of the phase identification algorithm. 4. Consideration of the methods applicable to the implementation of the phase identification algorithm. 5. Adjusting the parameters of the developed algorithm. Practical implementation of voltage and power losses estimation in the study of asymmetric modes was made on the example of a real section of the low-voltage distribution network. As a result, a consumer phase identification algorithm was developed which is a combination of techniques such as wavelet transform and Gaussian mixture model.

Keywords

идентификация фаз, voltage imbalance, smart meters, вейвлет-преобразование, phase identification, Электрическая энергия, потери электроэнергии, интеллектуальные приборы учёта, power losses, несимметрия напряжения, модель гауссовой смеси, gaussian mixture model, wavelet transform

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!