Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Адаптивная модель машинного обучения на основе полинома Колмогорова-Габора

выпускная квалификационная работа магистра

Адаптивная модель машинного обучения на основе полинома Колмогорова-Габора

Abstract

Целью работы является разработка адаптивной модели машинного обучения на основе полинома Колмогорова-Габора и проверка ее состоятельности при моделировании реального экономического объекта. Были решены следующие задачи:  провести теоретический обзор ИНС и полинома Колмогорова-Габора как инструментов моделирования;  проанализировать практическое применение этих инструментов на примере реального экономического объекта;  изучить теоретические основы методов адаптации в моделировании;  внедрить алгоритм адаптации в модель на основе полинома Колмогорова-Габора и применить эту модель к реальному экономическому объекту. Актуальность темы обусловлена необходимостью совершенствования методов моделирования сложных нелинейных эволюционных процессов для понимания и прогнозирования экономики. Источниками информации выступили данные отечественной и зарубежной научно-исследовательской литературы, официальных Интернет-ресурсов и аналитических агентств. Предложена адаптивная модель машинного обучения на основе полинома Колмогорова-Габора, доказавшая свою состоятельность для моделирования сложных эволюционных процессов, которая может способствовать развитию методов прогнозирования и их успешному применению в различных областях экономики.

The given work is devoted to develop an adaptive machine learning model based on the Kolmogorov-Gabor polynomial and to test its validity in modelling a real economic object. The research set the following goals:  to conduct a theoretical review of ANN and Kolmogorov-Gabor polynomial as modelling tools;  to analyze the practical application of these tools on the example of a real economic object;  to study the theoretical basis of adaptation methods in modelling;  to implement the adaptation algorithm in the model based on the Kolmogorov-Gabor polynomial and apply this model to a real economic object. The relevance of the topic is due to the need to improve the methods of modelling complex nonlinear evolutionary processes for understanding and forecasting the economy. The sources of information were data from domestic and foreign research literature, official Internet resources and analytical agencies. An adaptive machine learning model based on the Kolmogorov-Gabor polynomial is proposed, which proved its validity for modelling complex evolutionary processes, which can contribute to the development of forecasting methods and their successful application in various fields of economics.

Keywords

ÑÑ‚Ð¾Ñ Ð°ÑÑ‚Ð¸Ñ‡ÐµÑÐºÐ°Ñ аппроксимация, эконометрическое моделирование, econometric modelling, полином Колмогорова-Габора, neural networks, Kolmogorov-Gabor polynomial, machine learning, stochastic approximation, машинное обучение, нейронные сети

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!