
Целью работы ÑвлÑетÑÑ Ñ€Ð°Ð·Ñ€Ð°Ð±Ð¾Ñ‚ÐºÐ° адаптивной модели машинного Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð½Ð° оÑнове полинома Колмогорова-Габора и проверка ее ÑоÑтоÑтельноÑти при моделировании реального ÑкономичеÑкого объекта. Были решены Ñледующие задачи: ï€ Ð¿Ñ€Ð¾Ð²ÐµÑти теоретичеÑкий обзор ИÐС и полинома Колмогорова-Габора как инÑтрументов моделированиÑ; ï€ Ð¿Ñ€Ð¾Ð°Ð½Ð°Ð»Ð¸Ð·Ð¸Ñ€Ð¾Ð²Ð°Ñ‚ÑŒ практичеÑкое применение Ñтих инÑтрументов на примере реального ÑкономичеÑкого объекта; ï€ Ð¸Ð·ÑƒÑ‡Ð¸Ñ‚ÑŒ теоретичеÑкие оÑновы методов адаптации в моделировании; ï€ Ð²Ð½ÐµÐ´Ñ€Ð¸Ñ‚ÑŒ алгоритм адаптации в модель на оÑнове полинома Колмогорова-Габора и применить Ñту модель к реальному ÑкономичеÑкому объекту. ÐктуальноÑть темы обуÑловлена необходимоÑтью ÑовершенÑÑ‚Ð²Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¼ÐµÑ‚Ð¾Ð´Ð¾Ð² Ð¼Ð¾Ð´ÐµÐ»Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Ñложных нелинейных Ñволюционных процеÑÑов Ð´Ð»Ñ Ð¿Ð¾Ð½Ð¸Ð¼Ð°Ð½Ð¸Ñ Ð¸ Ð¿Ñ€Ð¾Ð³Ð½Ð¾Ð·Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Ñкономики. ИÑточниками информации выÑтупили данные отечеÑтвенной и зарубежной научно-иÑÑледовательÑкой литературы, официальных Интернет-реÑурÑов и аналитичеÑких агентÑтв. Предложена Ð°Ð´Ð°Ð¿Ñ‚Ð¸Ð²Ð½Ð°Ñ Ð¼Ð¾Ð´ÐµÐ»ÑŒ машинного Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð½Ð° оÑнове полинома Колмогорова-Габора, Ð´Ð¾ÐºÐ°Ð·Ð°Ð²ÑˆÐ°Ñ Ñвою ÑоÑтоÑтельноÑть Ð´Ð»Ñ Ð¼Ð¾Ð´ÐµÐ»Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Ñложных Ñволюционных процеÑÑов, ÐºÐ¾Ñ‚Ð¾Ñ€Ð°Ñ Ð¼Ð¾Ð¶ÐµÑ‚ ÑпоÑобÑтвовать развитию методов Ð¿Ñ€Ð¾Ð³Ð½Ð¾Ð·Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¸ их уÑпешному применению в различных облаÑÑ‚ÑÑ… Ñкономики.
The given work is devoted to develop an adaptive machine learning model based on the Kolmogorov-Gabor polynomial and to test its validity in modelling a real economic object. The research set the following goals: ï€ to conduct a theoretical review of ANN and Kolmogorov-Gabor polynomial as modelling tools; ï€ to analyze the practical application of these tools on the example of a real economic object; ï€ to study the theoretical basis of adaptation methods in modelling; ï€ to implement the adaptation algorithm in the model based on the Kolmogorov-Gabor polynomial and apply this model to a real economic object. The relevance of the topic is due to the need to improve the methods of modelling complex nonlinear evolutionary processes for understanding and forecasting the economy. The sources of information were data from domestic and foreign research literature, official Internet resources and analytical agencies. An adaptive machine learning model based on the Kolmogorov-Gabor polynomial is proposed, which proved its validity for modelling complex evolutionary processes, which can contribute to the development of forecasting methods and their successful application in various fields of economics.
ÑÑÐ¾Ñ Ð°ÑÑиÑеÑÐºÐ°Ñ Ð°Ð¿Ð¿ÑокÑимаÑиÑ, ÑкономеÑÑиÑеÑкое моделиÑование, econometric modelling, полином ÐолмогоÑова-ÐабоÑа, neural networks, Kolmogorov-Gabor polynomial, machine learning, stochastic approximation, маÑинное обÑÑение, нейÑоннÑе ÑеÑи
ÑÑÐ¾Ñ Ð°ÑÑиÑеÑÐºÐ°Ñ Ð°Ð¿Ð¿ÑокÑимаÑиÑ, ÑкономеÑÑиÑеÑкое моделиÑование, econometric modelling, полином ÐолмогоÑова-ÐабоÑа, neural networks, Kolmogorov-Gabor polynomial, machine learning, stochastic approximation, маÑинное обÑÑение, нейÑоннÑе ÑеÑи
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
