Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Исследование методов детектирования и профилирования ÑÐµÑ‚ÐµÐ²Ñ‹Ñ ÑƒÑÑ‚Ñ€Ð¾Ð¹ÑÑ‚Ð² по дампам сетевого трафика

выпускная квалификационная работа бакалавра

Исследование методов детектирования и профилирования ÑÐµÑ‚ÐµÐ²Ñ‹Ñ ÑƒÑÑ‚Ñ€Ð¾Ð¹ÑÑ‚Ð² по дампам сетевого трафика

Abstract

Целью работы является исследование возможности определения параметров сетевых устройств на основе анализа дампов сетевого трафика. Предметом исследования являются заголовки пакетов, которые способны предоставить информацию о устройствах сети. Задачи, решаемые в ходе исследования: 1. Изучить существующие методы детектирования и профилирования сетевых устройств; 2. Выявить признаки потенциально пригодные для выявления сетевых устройств и их характеристик; 3. Разработать способы и средства обработки дампов сетевого трафика протокола IPSEC для определения характеристик сетевых устройств; 4. Провести экспериментальные исследования и оценить эффективность методов с использованием выявленных признаков; 5. Провести анализ полученных результатов и оценить возможности применения выявленных признаков для определения характеристик сетевых устройств на основе анализа дампов сетевого трафика. В ходе работы была исследованы принципы работы и структура заголовков протокола IPsec. В результате работы был разработан алгоритм детектирования устройств в сети по дампу трафика защищенным протоколом IPsec, была продемонстрирована эффективность метода. Полученные результаты могут быть использованы в качестве основы для проектирования систем пассивной разведки сети.

The purpose of the work is to investigate the possibility of the determining the characteristics of network devices based on the analysis of network traffic dumps. The subject of the study is certain packet headers that are able to provide information about network devices. The research set the following goals: 1. Studying the existing methods of detecting and profiling network devices. 2. Identify the features that are potentially suitable for identifying network devices and their characteristics. 3. Developing ways and means of processing IPSEC network traffic dumps to determine the characteristics of network devices. 4. To conduct experimental studies and evaluate the effectiveness of methods using the identified features. 5. Analyze the results obtained and evaluate the possibilities of using the identified features to determine the characteristics of network devices based on the analysis of network traffic dumps. In the course of the work, the principles of operation and the structure of IPsec protocol headers were investigated. As a result of the work, an algorithm was developed for detecting devices in the network by traffic dump using the IPsec secure protocol, and the effectiveness of the method was demonstrated. The results obtained can be used as a basis for designing passive network intelligence systems.

Keywords

сетевой трафик, дампы трафика, network trafic, devise profiling, профилирование устройств, детектирование устройств, devise detection, traffic dumps

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!