<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ð’ результате были изучены формы предÑÑ‚Ð°Ð²Ð»ÐµÐ½Ð¸Ñ Ñ‚Ñ€ÐµÑ…Ð¼ÐµÑ€Ð½Ñ‹Ñ… данных и в качеÑтве результирующей выбрана вокÑельнаÑ. Разработана архитектура нейроÑети Ñ Ð¸Ñпользованием Ñверточных и рекуррентных технологий. Спроектирована и ÑоÑтавлена ÑÑ‚Ñ€ÑƒÐºÑ‚ÑƒÑ€Ð½Ð°Ñ Ñхема нейроÑетевой модели. Ð’ качеÑтве инÑÑ‚Ñ€ÑƒÐ¼ÐµÐ½Ñ‚Ð°Ñ€Ð¸Ñ Ð´Ð»Ñ Ñ€Ð°Ð·Ñ€Ð°Ð±Ð¾Ñ‚ÐºÐ¸ иÑпользован Ñзык Ð¿Ñ€Ð¾Ð³Ñ€Ð°Ð¼Ð¼Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Python и фреймворк Tensorflow. Приведены программные алгоритмы Ð´Ð»Ñ Ñ€ÐµÐ°Ð»Ð¸Ð·Ð°Ñ†Ð¸Ð¸ фундаментальных и оÑновных блоков Ñети. Проведена оценка качеÑтва отработки Ñозданной модели на базе анализа графиков Ð´Ð»Ñ Ð¿Ð¾Ñ‚ÐµÑ€ÑŒ при обучении и валидации, а также трех метрик: Accuracy, RMS и IOU. ПредÑтавлены результаты работы Ñети в виде выходных реконÑтруированных трехмерных объектов.
As a result, the forms of representation of three-dimensional data were studied and voxel was chosen as the result. The neural network architecture has been developed using convolutional and recurrent technologies. A struct diagram of the neural network model was designed and compiled. The Python programming language and the Tensorflow framework were used as development tools. Software algorithms for the implementation of the fundamental and main blocks of the network are given. The quality of the developed model was assessed based on the analysis of graphs for training and validation losses, as well as three metrics: Accuracy, RMS, and IOU. The results of the network operation are presented in the form of output reconstructed three-dimensional objects.
ÑÑÐµÑ Ð¼ÐµÑнÑе изобÑажениÑ, ÐейÑоннÑе ÑеÑи, 3D images, 3D ÑеконÑÑÑÑкÑиÑ, 3D reconstruction, Python
ÑÑÐµÑ Ð¼ÐµÑнÑе изобÑажениÑ, ÐейÑоннÑе ÑеÑи, 3D images, 3D ÑеконÑÑÑÑкÑиÑ, 3D reconstruction, Python
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |