Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Авиационный двигатель тягой 70 кН

выпускная квалификационная работа бакалавра

Авиационный двигатель тягой 70 кН

Abstract

В «простом» термодинамическом цикле ГТД к потоку рабочего тела подводится тепло. В ГТД этот процесс осуществляется в камере сгорания (КС). Тепло подводится за счет сгорания топлива, т. е. преобразования химической энергии топлива в тепловую, при этом температура рабочего тела возрастает от значения 2 (за компрессором) до 3 (на входе в турбину). Отсюда и определение: Камера сгорания (КС) – один из основных узлов газотурбинных двигателей (ГТД). Ее назначение – сжигание топлива и получение высоко-нагретого рабочего тала. Реальный процесс в КС отличается от идеального наличием потерь давления. Потери давления в КС складываются из гидравлических потерь (потерь трения) и потерь от подвода тепла к потоку рабочего тела. Гидравлические потери, в свою очередь, можно разделить на составляющие потери: – в диффузоре; – в кольцевых каналах; – на втекание воздуха в отверстия жаровой трубы и элементы фронтового устройства (ФУ); – на смешение струй. Кроме потерь давления процессы в КС сопровождаются потерями тепла за счет его рассеивания в окружающее пространство и за счет неполного сгорания топлива. Потери тепла в окружающее пространство по сравнению с количеством тепла, подводимым к рабочему телу, в КС ТРД составляют 0,005 – 0,01 %. Экономичность двигателя находится в прямой зависимости от полноты сгорания топлива. В современных ГТД процесс сгорания топлива в КС достаточно хорошо организован, поэтому полнота сгорания топлива в них достигает величины 0,995 – 0,993.

In the "simple" thermodynamic cycle of a gas turbine engine, heat is supplied to the flow of the working fluid. In a gas turbine engine, this process is carried out in a combustion chamber (CS). Heat is supplied due to fuel combustion, i.e. the conversion of chemical fuel energy into thermal energy, while the temperature of the working fluid increases from a value of 2 (behind the compressor) to 3 (at the turbine inlet). Hence the definition: The combustion chamber (CS) is one of the main components of gas turbine engines (GTE). Its purpose is to burn fuel and obtain a highly heated working hoist. The real process in CS differs from the ideal one by the presence of pressure losses. Pressure losses in the CS consist of hydraulic losses (friction losses) and losses from heat supply to the working fluid flow. Hydraulic losses, in turn, can be divided into component losses: – in the diffuser; – in the ring channels; – for air to flow into the openings of the heat pipe and the elements of the front device (FU); – to mix the jets. In addition to pressure losses, processes in CS are accompanied by heat losses due to its dispersion into the surrounding space and due to incomplete combustion of fuel. The heat loss to the surrounding space in comparison with the amount of heat supplied to the working fluid in the CS turbofan is 0.005 – 0.01%. The efficiency of the engine is directly dependent on the completeness of fuel combustion. In modern gas turbine engines, the process of fuel combustion in The CS is quite well organized, so the completeness of fuel combustion in them reaches a value of 0.995 – 0.993.

Keywords

прототип ал-31ф, turbofan aircraft engine, Ð´Ð²ÑƒÑ ÐºÐ¾Ð½Ñ‚ÑƒÑ€Ð½Ñ‹Ð¹ авиационный двигатель, axial compressor, turbine, компрессор, турбина, камера сгорания, prototype al-31f, turbojet engine, combustor, авиационный двигатель

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!