
Ð’ «проÑтом» термодинамичеÑком цикле ГТД к потоку рабочего тела подводитÑÑ Ñ‚ÐµÐ¿Ð»Ð¾. Ð’ ГТД Ñтот процеÑÑ Ð¾ÑущеÑтвлÑетÑÑ Ð² камере ÑÐ³Ð¾Ñ€Ð°Ð½Ð¸Ñ (КС). Тепло подводитÑÑ Ð·Ð° Ñчет ÑÐ³Ð¾Ñ€Ð°Ð½Ð¸Ñ Ñ‚Ð¾Ð¿Ð»Ð¸Ð²Ð°, Ñ‚. е. Ð¿Ñ€ÐµÐ¾Ð±Ñ€Ð°Ð·Ð¾Ð²Ð°Ð½Ð¸Ñ Ñ…Ð¸Ð¼Ð¸Ñ‡ÐµÑкой Ñнергии топлива в тепловую, при Ñтом температура рабочего тела возраÑтает от Ð·Ð½Ð°Ñ‡ÐµÐ½Ð¸Ñ 2 (за компреÑÑором) до 3 (на входе в турбину). ОтÑюда и определение: Камера ÑÐ³Ð¾Ñ€Ð°Ð½Ð¸Ñ (КС) – один из оÑновных узлов газотурбинных двигателей (ГТД). Ее назначение – Ñжигание топлива и получение выÑоко-нагретого рабочего тала. Реальный процеÑÑ Ð² КС отличаетÑÑ Ð¾Ñ‚ идеального наличием потерь давлениÑ. Потери Ð´Ð°Ð²Ð»ÐµÐ½Ð¸Ñ Ð² КС ÑкладываютÑÑ Ð¸Ð· гидравличеÑких потерь (потерь трениÑ) и потерь от подвода тепла к потоку рабочего тела. ГидравличеÑкие потери, в Ñвою очередь, можно разделить на ÑоÑтавлÑющие потери: – в диффузоре; – в кольцевых каналах; – на втекание воздуха в отверÑÑ‚Ð¸Ñ Ð¶Ð°Ñ€Ð¾Ð²Ð¾Ð¹ трубы и Ñлементы фронтового уÑтройÑтва (ФУ); – на Ñмешение Ñтруй. Кроме потерь Ð´Ð°Ð²Ð»ÐµÐ½Ð¸Ñ Ð¿Ñ€Ð¾Ñ†ÐµÑÑÑ‹ в КС ÑопровождаютÑÑ Ð¿Ð¾Ñ‚ÐµÑ€Ñми тепла за Ñчет его раÑÑÐµÐ¸Ð²Ð°Ð½Ð¸Ñ Ð² окружающее проÑтранÑтво и за Ñчет неполного ÑÐ³Ð¾Ñ€Ð°Ð½Ð¸Ñ Ñ‚Ð¾Ð¿Ð»Ð¸Ð²Ð°. Потери тепла в окружающее проÑтранÑтво по Ñравнению Ñ ÐºÐ¾Ð»Ð¸Ñ‡ÐµÑтвом тепла, подводимым к рабочему телу, в КС ТРД ÑоÑтавлÑÑŽÑ‚ 0,005 – 0,01 %. ÐкономичноÑть Ð´Ð²Ð¸Ð³Ð°Ñ‚ÐµÐ»Ñ Ð½Ð°Ñ…Ð¾Ð´Ð¸Ñ‚ÑÑ Ð² прÑмой завиÑимоÑти от полноты ÑÐ³Ð¾Ñ€Ð°Ð½Ð¸Ñ Ñ‚Ð¾Ð¿Ð»Ð¸Ð²Ð°. Ð’ Ñовременных ГТД процеÑÑ ÑÐ³Ð¾Ñ€Ð°Ð½Ð¸Ñ Ñ‚Ð¾Ð¿Ð»Ð¸Ð²Ð° в КС доÑтаточно хорошо организован, поÑтому полнота ÑÐ³Ð¾Ñ€Ð°Ð½Ð¸Ñ Ñ‚Ð¾Ð¿Ð»Ð¸Ð²Ð° в них доÑтигает величины 0,995 – 0,993.
In the "simple" thermodynamic cycle of a gas turbine engine, heat is supplied to the flow of the working fluid. In a gas turbine engine, this process is carried out in a combustion chamber (CS). Heat is supplied due to fuel combustion, i.e. the conversion of chemical fuel energy into thermal energy, while the temperature of the working fluid increases from a value of 2 (behind the compressor) to 3 (at the turbine inlet). Hence the definition: The combustion chamber (CS) is one of the main components of gas turbine engines (GTE). Its purpose is to burn fuel and obtain a highly heated working hoist. The real process in CS differs from the ideal one by the presence of pressure losses. Pressure losses in the CS consist of hydraulic losses (friction losses) and losses from heat supply to the working fluid flow. Hydraulic losses, in turn, can be divided into component losses: – in the diffuser; – in the ring channels; – for air to flow into the openings of the heat pipe and the elements of the front device (FU); – to mix the jets. In addition to pressure losses, processes in CS are accompanied by heat losses due to its dispersion into the surrounding space and due to incomplete combustion of fuel. The heat loss to the surrounding space in comparison with the amount of heat supplied to the working fluid in the CS turbofan is 0.005 – 0.01%. The efficiency of the engine is directly dependent on the completeness of fuel combustion. In modern gas turbine engines, the process of fuel combustion in The CS is quite well organized, so the completeness of fuel combustion in them reaches a value of 0.995 – 0.993.
пÑоÑоÑип ал-31Ñ, turbofan aircraft engine, двÑÑ ÐºÐ¾Ð½ÑÑÑнÑй авиаÑионнÑй двигаÑелÑ, axial compressor, turbine, компÑеÑÑоÑ, ÑÑÑбина, камеÑа ÑгоÑаниÑ, prototype al-31f, turbojet engine, combustor, авиаÑионнÑй двигаÑелÑ
пÑоÑоÑип ал-31Ñ, turbofan aircraft engine, двÑÑ ÐºÐ¾Ð½ÑÑÑнÑй авиаÑионнÑй двигаÑелÑ, axial compressor, turbine, компÑеÑÑоÑ, ÑÑÑбина, камеÑа ÑгоÑаниÑ, prototype al-31f, turbojet engine, combustor, авиаÑионнÑй двигаÑелÑ
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
