<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Тема выпуÑкной квалификационной работы: «Методы машинного Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð² ÑиÑтемах Ð¿Ñ€Ð¾Ð³Ð½Ð¾Ð·Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ Ð»ÐµÑных пожаров». Ð”Ð°Ð½Ð½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена анализу Ð¿Ñ€Ð¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ð¼ÐµÑ‚Ð¾Ð´Ð¾Ð² машинного Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð² обработке данных о леÑных пожарах в парке МонтеÑиньо. Ð’ ходе работы решалиÑÑŒ Ñледующие задачи:- Изучение предметной облаÑти по тематике влиÑÐ½Ð¸Ñ Ð»ÐµÑных пожаров на Ñовременную жизнь человека.- Ðнализ и обработка входных данных. - Ð ÐµÐ°Ð»Ð¸Ð·Ð°Ñ†Ð¸Ñ Ð¼Ð¾Ð´ÐµÐ»ÐµÐ¹ методов машинного обучениÑ.- Применение различных методов Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ð´Ð»Ñ Ð½ÐµÑкольких вариантов обработанных данных.- Ðнализ результатов точноÑти, полученных в результате Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ .Ð’ результате было получена программа, позволÑÑŽÑ‰Ð°Ñ Ð¿Ñ€Ð¾Ð²Ð¾Ð´Ð¸Ñ‚ÑŒ анализ неÑкольких алгоритмов бинарной клаÑÑификации при различных параметрах обработки данных Ñ Ð¸Ñпользованием предоÑтавленного набора данных.
Topic of the final qualification work: "Methods of machine learning in forest fire forecasting systems". This work is devoted to the analysis of the application of machine learning methods in the processing of data on forest fires in Montesigno Park. During the work the following tasks were solved:- Study of the subject area on the subject of the impact of forest fires on modern human life.- Analysis and processing of input data. - Implementation of models of machine learning methods.- Application of various training methods for several variants of the processed data.- Analysis of accuracy results obtained as a result of training. As a result, a program was obtained that allows the analysis of several binary classification algorithms with various data processing parameters using the provided data set.
ноÑмализаÑиÑ, machine learning, normalization, binary classification, анализ даннÑÑ, бинаÑÐ½Ð°Ñ ÐºÐ»Ð°ÑÑиÑикаÑиÑ, data analysis, меÑÐ¾Ð´Ñ Ð¼Ð°Ñинного обÑÑениÑ, подгоÑовка даннÑÑ, data preparation
ноÑмализаÑиÑ, machine learning, normalization, binary classification, анализ даннÑÑ, бинаÑÐ½Ð°Ñ ÐºÐ»Ð°ÑÑиÑикаÑиÑ, data analysis, меÑÐ¾Ð´Ñ Ð¼Ð°Ñинного обÑÑениÑ, подгоÑовка даннÑÑ, data preparation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |