Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Выявление вредоносного программного обеспечения для Android методами статического анализа

выпускная квалификационная работа специалиста

Выявление вредоносного программного обеспечения для Android методами статического анализа

Abstract

Тема выпускной квалификационной работы: «Выявление вредоносного программного обеспечения для Android методами статического анализа». Данная работа посвящена повышению эффективности обнаружения ВПО для Android приложений методами статического анализа. Задачи, которые решались в ходе исследования: 1. Исследовать существующие методы статического анализа Android приложений. 2. Сформировать пространство анализируемых признаков. 3. Создать программное средство для обработки APK файлов. 4. Проанализировать методы машинного обучения для классификации Android приложений. 5. Исследовать существующие методы оценки результатов классификации. 6. Провести сравнительный анализ методов выявления ВПО. В данной дипломной работе были проанализированы существующие методы статического анализа. Были рассмотрены их недостатки. На основе полученной информации было сформировано пространство анализируемых признаков. Было создано программное средство основанное на фреймворках MobSF и Androwarn. Также был разработан метод выделения признаков из дизассемблированных файлов Android приложения. Были проанализированы методы машинного обучения для классификации программного обеспечения Android, а также предложен метод оценки результатов классификации. Результаты экспериментальной оценки эффективности разработанного прототипа в комбинации с алгоритмом случайного леса или искусственной нейронной сетью демонстрируют высокую вероятность обнаружения вредоносных Android приложений.

The subject of the graduate qualification work is “Detection of malicious software for Android using static analysis methods”. This work is devoted to increasing the detection efficiency of malware for Android applications using static analysis methods. Tasks that were solved during the study: 1. Explore existing methods of static analysis of Android applications. 2. To form the space of the analyzed features. 3. Create a software tool for processing APK files. 4. Analyze machine learning methods to classify Android applications. 5. Explore existing methods for evaluating classification results. 6. Conduct a comparative analysis of methods for identifying malware. In this thesis, the existing methods of static analysis were analyzed. Their disadvantages were considered. Based on the information received, a space of analyzed features was formed. A software tool based on the MobSF and Androwarn frameworks was created. Also, was developed a method for extracting attributes from disassembled files of an Android application. Machine learning methods for classifying Android software were analyzed, and a method for evaluating classification results was proposed. The results of an experimental evaluation of the effectiveness of the developed prototype in combination with a random forest algorithm or artificial neural network demonstrate a high probability of detecting malicious Android applications.

Keywords

Информационные системы, статический анализ android приложения, static analysis of android applications, Информация, analysis of disassembled code, анализ дизассемблированного кода

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Beta
sdg_colorsSDGs:
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!