<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ð”Ð°Ð½Ð½Ð°Ñ Ñ€Ð°Ð±Ð¾Ñ‚Ð° поÑвÑщена анализу результатов Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñтудентов на маÑÑовом открытом онлайн курÑе Ñ Ð¿Ð¾Ð¼Ð¾Ñ‰ÑŒÑŽ Ñ€ÐµÑˆÐµÐ½Ð¸Ñ Ð·Ð°Ð´Ð°Ñ‡Ð¸ клаÑтеризации. Задачи, которые решалиÑÑŒ в ходе иÑÑледованиÑ: 1. Обзор предметной облаÑти. 2. Изучение методов и ÑредÑтв интеллектуального анализа данных. 3. Подготовка и иÑÑледование полученных наборов данных. 4. Решение задачи клаÑтеризации при различном количеÑтве клаÑтеров, а также Ð¸Ð½Ñ‚ÐµÑ€Ð¿Ñ€ÐµÑ‚Ð°Ñ†Ð¸Ñ Ð¿Ð¾Ð»ÑƒÑ‡ÐµÐ½Ð½Ñ‹Ñ… результатов. 5. Оценка результатов Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñтудентов ПолитехничеÑкого универÑитета и их влиÑÐ½Ð¸Ñ Ð½Ð° общую уÑпеваемоÑть на курÑе. Работа проведена Ñ Ð¸Ñпользованием вÑтроенных пакетов и функций Ñзыка R в программной Ñреде RStudio. ЗдеÑÑŒ были иÑÑледованы полученные наборы данных, поÑтроены графики и диаграммы общей уÑпеваемоÑти Ñтудентов на курÑе Ñ Ð¼Ð¾Ð¼ÐµÐ½Ñ‚Ð° первого запуÑка, выполнена клаÑÑ‚ÐµÑ€Ð¸Ð·Ð°Ñ†Ð¸Ñ Ñлушателей. Отдельно был проведен анализ результатов Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñтудентов, ÑвлÑющихÑÑ Ñтудентами ПолитехничеÑкого универÑитета. Также, была при-ведена Ð¸Ð½Ñ‚ÐµÑ€Ð¿Ñ€ÐµÑ‚Ð°Ñ†Ð¸Ñ Ð¸ обоÑнование полученных результатов. Ð’ результате была решена задача клаÑтеризации Ñлушателей маÑÑового открытого онлайн курÑа. Ð’Ñе Ñтуденты были разделены на характерные группы, Ñхожие по определенным признакам, предложено обоÑнование именно такого разделениÑ.
This work is devoted to the analysis of student learning results in a massive open online course with the help of solving the clustering problem. The research set the following goals: 1. A review of the subject area. 2. The study of methods and means of data mining. 3. Preparation and research of the obtained data sets. 4. The solution of the clustering problem with a different number of clus-ters, as well as the interpretation of the results. 5. Evaluation of the learning outcomes of students of the Polytechnic Uni-versity and their impact on the overall performance of the course. The work was carried out using built-in packages and functions of the R language in the RStudio software environment. Here, the obtained data sets were investigated, graphs and diagrams of the overall performance of students on the course from the moment of the first launch were built, the students were clus-tered. A separate analysis was made of the learning outcomes of students who are students of the Polytechnic University. Also, the interpretation and justifica-tion of the results were presented. As a result, the task of clustering students of a massive open online course was solved. All students were divided into characteristic groups that were similar in certain respects; the rationale for just such a division was proposed.
online courses, educational data mining, RStudio, ÑзÑк R, наÑка о даннÑÑ, R, инÑеллекÑÑалÑнÑй анализ даннÑÑ Ð² обÑазовании, clusterisation, data science, онлайн кÑÑÑÑ, клаÑÑеÑизаÑиÑ
online courses, educational data mining, RStudio, ÑзÑк R, наÑка о даннÑÑ, R, инÑеллекÑÑалÑнÑй анализ даннÑÑ Ð² обÑазовании, clusterisation, data science, онлайн кÑÑÑÑ, клаÑÑеÑизаÑиÑ
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |