
СоответÑтвует Ñодержанию федеральной диÑциплины «Машины Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð²Â» гоÑударÑтвенного образовательного Ñтандарта по направлению подготовки бакалавров 01.03.02 Â«ÐŸÑ€Ð¸ÐºÐ»Ð°Ð´Ð½Ð°Ñ Ð¼Ð°Ñ‚ÐµÐ¼Ð°Ñ‚Ð¸ÐºÐ° и информатика», ÑпециальноÑть 01.03.02_02 «СиÑтемное программирование». РаÑÑмотрены оÑновные принципы и идеи Ñовременного Ð¿Ð¾Ð´Ñ Ð¾Ð´Ð° к решению задачи воÑÑÑ‚Ð°Ð½Ð¾Ð²Ð»ÐµÐ½Ð¸Ñ Ð·Ð°Ð²Ð¸ÑимоÑтей по ÑмпиричеÑким данным. Приведены оÑновные базовые идеи реализации SVM-методов. Сделан обзор наиболее ÑÑ„Ñ„ÐµÐºÑ‚Ð¸Ð²Ð½Ñ‹Ñ Ð°Ð»Ð³Ð¾Ñ€Ð¸Ñ‚Ð¼Ð¾Ð² поÑÑ‚Ñ€Ð¾ÐµÐ½Ð¸Ñ Ð¼Ð°ÑˆÐ¸Ð½ Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð² Ð´Ð»Ñ Ð·Ð°Ð´Ð°Ñ‡ бинарной клаÑÑификации, клаÑтеризации и воÑÑÑ‚Ð°Ð½Ð¾Ð²Ð»ÐµÐ½Ð¸Ñ Ñ€ÐµÐ³Ñ€ÐµÑÑии. Предназначено Ð´Ð»Ñ Ñтудентов, Ð¾Ð±ÑƒÑ‡Ð°ÑŽÑ‰Ð¸Ñ ÑÑ Ð¿Ð¾ бакалаврÑким и магиÑтерÑким программам, а также Ð´Ð»Ñ Ð°Ñпирантов, Ð¸Ð·ÑƒÑ‡Ð°ÑŽÑ‰Ð¸Ñ Ð¼ÐµÑ‚Ð¾Ð´Ñ‹ и алгоритмы машинного обучениÑ.
The training manual corresponds to the content of the federal discipline “Support Vector Machines†of the state educational standard for the bachelor’s degree major 01.03.02 “Applied Mathematics and Computer Scienceâ€, stream 01.03.02_02 “System Programmingâ€. The manual considers the basic principles and ideas of the modern approach to solving the problem of reconstructing dependencies from empirical data. The main basic ideas of implementing SVM methods are presented. The authors made a review of the most effective algorithms for constructing support vector machines for the tasks of binary classification, clustering, and regression recovery. The manual is intended for students enrolled in bachelor’s and master’s degree programs, as well as for graduate students studying methods and algorithms of machine learning.
ÐаÑемаÑиÑеÑÐºÐ°Ñ ÑÑаÑиÑÑика
ÐаÑемаÑиÑеÑÐºÐ°Ñ ÑÑаÑиÑÑика
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
