Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Статистический анализ Ð±Ð¾Ð»ÑŒÑˆÐ¸Ñ Ð´Ð°Ð½Ð½Ñ‹Ñ : Ð¿Ð¾Ð´Ñ Ð¾Ð´ на основе машин Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð²

учебное пособие

Статистический анализ Ð±Ð¾Ð»ÑŒÑˆÐ¸Ñ Ð´Ð°Ð½Ð½Ñ‹Ñ : Ð¿Ð¾Ð´Ñ Ð¾Ð´ на основе машин Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð²

Abstract

Соответствует содержанию федеральной дисциплины «Машины Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð²Â» государственного образовательного стандарта по направлению подготовки бакалавров 01.03.02 «Прикладная математика и информатика», специальность 01.03.02_02 «Системное программирование». Рассмотрены основные принципы и идеи современного Ð¿Ð¾Ð´Ñ Ð¾Ð´Ð° к решению задачи восстановления зависимостей по эмпирическим данным. Приведены основные базовые идеи реализации SVM-методов. Сделан обзор наиболее ÑÑ„Ñ„ÐµÐºÑ‚Ð¸Ð²Ð½Ñ‹Ñ Ð°Ð»Ð³Ð¾Ñ€Ð¸Ñ‚Ð¼Ð¾Ð² построения машин Ð¾Ð¿Ð¾Ñ€Ð½Ñ‹Ñ Ð²ÐµÐºÑ‚Ð¾Ñ€Ð¾Ð² для задач бинарной классификации, кластеризации и восстановления регрессии. Предназначено для студентов, Ð¾Ð±ÑƒÑ‡Ð°ÑŽÑ‰Ð¸Ñ ÑÑ по бакалаврским и магистерским программам, а также для аспирантов, Ð¸Ð·ÑƒÑ‡Ð°ÑŽÑ‰Ð¸Ñ Ð¼ÐµÑ‚Ð¾Ð´Ñ‹ и алгоритмы машинного обучения.

The training manual corresponds to the content of the federal discipline “Support Vector Machines” of the state educational standard for the bachelor’s degree major 01.03.02 “Applied Mathematics and Computer Science”, stream 01.03.02_02 “System Programming”. The manual considers the basic principles and ideas of the modern approach to solving the problem of reconstructing dependencies from empirical data. The main basic ideas of implementing SVM methods are presented. The authors made a review of the most effective algorithms for constructing support vector machines for the tasks of binary classification, clustering, and regression recovery. The manual is intended for students enrolled in bachelor’s and master’s degree programs, as well as for graduate students studying methods and algorithms of machine learning.

Keywords

Математическая статистика

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Beta
sdg_colorsSDGs:
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!