Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Biochimica Polo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Biochimica Polonica
Article . 2006 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Tandemly repeated trinucleotides - comparative analysis.

Authors: Piwowar, Monika; Meus, Jan; Piwowar, Piotr; Wiśniowski, Zdzisław; Stefaniak, Justyna; Roterman-Konieczna, Irena;

Tandemly repeated trinucleotides - comparative analysis.

Abstract

Characteristics of 64 possible tandem trinucleotide repeats (TSSR) from Homo sapiens (hs), Mus musculus (mm) and Rattus norvegicus (rn) genomes are presented. Comparative analysis of TSSR frequency depending on their repetitiveness and similarity of the TSSR length distributions is shown. Comparative analysis of TSSR sequence motifs and association between type of motif and its length (n) using rho-coefficient method (quantitatively measuring the association between variables in contingency tables) is presented. These analyses were carried out in the context of neurodegenerative diseases based on trinucleotide tandems. The length of these tandems and their relation to other TSSR is estimated. It was found that the higher repetitiveness (n) the lower frequency of trinucleotides tandems. Differences between genomes under consideration, especially in longer than n=9 TSSR were discussed. A significantly higher frequency off A- and T-rich tandems is observed in the human genome (as well as in human mRNA). This observation also applies to mm and rn, although lower abundant in proportion to human genomes was found. The origin of elongation (or shortening) of TSSR seems to be neither frequency nor length dependent. The results of TSSR analysis presented in this work suggest that neurodegenerative disease-related microsatellites do not differ versus the other except the lower frequency versus the other TSSR. CAG occurs with relatively high frequency in human mRNA, although there are other TSSR with higher frequency that do not cause comparable disease disorders. It suggests that the mechanism of TSSR instability is not the only origin of neurodegenerative diseases.

Country
Poland
Keywords

Genome, Computational Biology, Neurodegenerative Diseases, Sequence Analysis, DNA, microsatellites, Rats, trinucleotide tandem repeats, Mice, neurodegenerative disease, Trinucleotide Repeats, Tandem Repeat Sequences, Animals, Humans, Trinucleotide Repeat Expansion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
gold