
doi: 10.1784/cm2024.3a2
handle: 20.500.11824/1937 , 11583/2997074
This study introduces a pioneering monitoring system designed to mitigate operational costs and enhance the sustainability of Floating Offshore Wind Turbines (FOWT). The proposed framework combines Autoregressive models with a Stacked Auto-Associativebased Deep Neural Network (AANN-DNN) to detect and classify damages in mooring systems of FOWTs. By extracting damage-sensitive features (DSFs) using the AR models from time-series data and employing unsupervised learning in the auto-associative neural network, followed by supervised training with DNN, the approach demonstrates exceptional accuracy in damage identification and classification. Numerical simulations conducted using NREL's OpenFAST software under diverse metocean conditions validate the method's efficacy, offering a promising solution for efficient FOWT mooring line monitoring.
Deep Neural Network (DNN), Structural health monitoring (SHM), Auto Regressive Model (AR), Mooring lines, Auto-Associative Neural Network (AANN), Damage diagnosis, Offshore Structures
Deep Neural Network (DNN), Structural health monitoring (SHM), Auto Regressive Model (AR), Mooring lines, Auto-Associative Neural Network (AANN), Damage diagnosis, Offshore Structures
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
