Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Publications Open Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Monitoring Mooring Lines of Floating Offshore Wind Turbines: Autoregressive Coefficients and Stacked Auto-Associative-Deep Neural Networks

Authors: Sharma S.; Nava Vincenzo;

Monitoring Mooring Lines of Floating Offshore Wind Turbines: Autoregressive Coefficients and Stacked Auto-Associative-Deep Neural Networks

Abstract

This study introduces a pioneering monitoring system designed to mitigate operational costs and enhance the sustainability of Floating Offshore Wind Turbines (FOWT). The proposed framework combines Autoregressive models with a Stacked Auto-Associativebased Deep Neural Network (AANN-DNN) to detect and classify damages in mooring systems of FOWTs. By extracting damage-sensitive features (DSFs) using the AR models from time-series data and employing unsupervised learning in the auto-associative neural network, followed by supervised training with DNN, the approach demonstrates exceptional accuracy in damage identification and classification. Numerical simulations conducted using NREL's OpenFAST software under diverse metocean conditions validate the method's efficacy, offering a promising solution for efficient FOWT mooring line monitoring.

Country
Italy
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Upload OA version
Are you the author? Do you have the OA version of this publication?