Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kahramanmaras Sutcu ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

Immobilization With Clay of Battery Slag: Full Factorial Design

Authors: TİBET, Yusuf; ÇORUH, Semra;

Immobilization With Clay of Battery Slag: Full Factorial Design

Abstract

A large part of the lead-acid battery consists of lead and sulfuric acid. Acid is corrosive and very dangerous because it contains dissolved lead. It must be kept under control in terms of environmental and human health because of lead is a toxic substance. The present study includes the safe disposal of lead-acid battery slag using clay material. The aim of this study is to investigate the adsorption of lead removal from lead acid-batteries slag on clay using 23 full factorial design. The combined effects of adsorbent amount, temperature, adsorbent type and leachate solution on the lead removal adsorption were studied. Factorial design of experiments is employed to study the effect of three factors leachant solution type (TS EN 12457-4 – TCLP), adsorbent amount (10% and 50%), temperature (20 and 60 oC), and leachate solution (TCLP DIN), at two levels low and high. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. The results showed that the most effective parameters of the standard-temperature interaction is evaluated statistically.

Kurşun asit akülerin büyük bir kısmı kurşun ve sülfürik asitten meydana gelir. Asit korozif olmasının yanında çözünmüş halde kurşun içerdiğinden oldukça tehlikelidir. Kurşun toksik bir metal olup çevre ve insan sağlığı açısından kontrol altında tutulması gerekir. Bu sebeple ömrünü tamamlamış aküler uygun yöntemlerle toplanmalı ve geri kazanılmalıdır. Bu çalışmada kurşun geri kazanımı sonucu oluşan cürufun tehlikelilik arz eden özelliklerinin iyileştirilmesi için doğal bir materyal olan kil kullanılmıştır. 23 faktöriyel dizayn kullanılarak kilin kurşun adsorplama yeteneği araştırılmıştır. Bu amaçla standart türü, adsorbent dozajı ve sıcaklığın etkisi incelenmiştir. Faktöriyel dizayn yönteminde iki aşamalı üç faktör standart türü olarak TS EN 12457-4 – TCLP, dozaj olarak %10 - %50 ve sıcaklık olarak 20 oC – 60 oC olarak denenmiştir. Sonuçlar istatistiksel olarak değerlendirilmiş olup standart-sıcaklık etkileşiminin en etkin parametre olduğu görülmüştür.

Keywords

Environmental Engineering, Çevre Mühendisliği, Lead-acid batteries slag;leachate solution;immobilisation;full factorial design analysis, Akü cürufu;liçing çözeltisi;immobilizasyon;tam faktöriyel dizayn analiz

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold