
This paper introduces the "compound confluent hypergeometric" (CCH) distribution. The CCH unifies and generalizes three recently introduced generalizations of the beta distribution: the Gauss hypergeometric (GH) distribution of Armero and Bayarri (1994), the generalized beta (GB) distribution of McDonald and Xu (1995), and the confluent hypergeometric (CH) distribution of Gordy (forthcoming). Unlike the beta, GB and GH, the CCH allows for conditioning on explanatory variables in a natural and convenient way. The CCH family is conjugate for gamma distributed signals, and so may also prove useful in Bayesian analysis. Application of the CCH is demonstrated with two measures of household liquid assets. In each case, the CCH yields a statistically significant improvement in fit over the more restrictive alternatives.
Econometric models ; Statistics
Econometric models ; Statistics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
