Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
edoc
Preprint . 2016
Data sources: edoc
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Uncertainty Quantification
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.5451/uni...
Other literature type . 2017
Data sources: Datacite
https://dx.doi.org/10.5451/uni...
Other literature type . 2016
Data sources: Datacite
versions View all 4 versions
addClaim

ON BERNOULLI'S FREE BOUNDARY PROBLEM WITH A RANDOM BOUNDARY

Authors: Dambrine, Marc; Harbrecht, Helmut; Peters, Michael; Puig, Benedicte;

ON BERNOULLI'S FREE BOUNDARY PROBLEM WITH A RANDOM BOUNDARY

Abstract

This article is dedicated to the solution of Bernoulli’s exterior free boundary problem in the situation of a random interior boundary. We provide the theoretical background that ensures the well-posedness of the problem under consideration and describe two different frameworks to define the expectation and the deviation of the resulting annular domain. The first approach is based on the Vorob’ev expectation, which can be defined for arbitrary sets. The second approach is based on the particular parametrization. In order to compare these approaches, we present analytical examples for the case of a circular interior boundary. Additionally, numerical experiments are performed for more general geometric configurations. For the numerical approximation of the expectation and the deviation, we propose a sampling method like the Monte Carlo or the quasi-Monte Carlo quadrature. Each particular realization of the free boundary is then computed by the trial method, which is a fixed-point-like iteration for the solution of Bernoulli’s free boundary problem.

Country
Switzerland
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
bronze