
Abstract This study was conducted to develop PCL nanofibers with the incorporation of microalgae biopeptides and to evaluate the stability of chicken meat cuts during storage. PCL and PCL/biopeptides nanofibers were formed by electrospinning method, and the diameters obtained were 404 and 438 nm, respectively. The tensile strength, elongation, melting temperature and thermal stability of biopeptide-added PCL nanofibers were 0.245 MPa, 64%, 56.8 °C and 318 °C, respectively. PCL/biopeptide nanofibers showed a reducing power of 0.182, inhibition of 22.6% and 12.4% for DPPH and ABTS radicals, respectively. Chicken meat cuts covered by the PCL/biopeptide nanofibers showed 0.98 mgMDA∙kg-1 and 25.8 mgN∙100g-1 for TBARS and N-BVT analysis, respectively. Thus, the PCL/biopeptide nanofibers provided greater stability to the product and control of oxidative processes ensuring the product quality maintenance during the 12 d of storage.
antioxidants, Chemical technology, poly-ɛ-caprolactone, TP1-1185, electrospinning
antioxidants, Chemical technology, poly-ɛ-caprolactone, TP1-1185, electrospinning
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
