
ABSTRACT Functional genomic analyses require intact RNA; however, Passiflora edulis leaves are rich in secondary metabolites that interfere with RNA extraction primarily by promoting oxidative processes and by precipitating with nucleic acids. This study aimed to analyse three RNA extraction methods, Concert™ Plant RNA Reagent (Invitrogen, Carlsbad, CA, USA), TRIzol® Reagent (Invitrogen) and TRIzol® Reagent (Invitrogen)/ice -commercial products specifically designed to extract RNA, and to determine which method is the most effective for extracting RNA from the leaves of passion fruit plants. In contrast to the RNA extracted using the other 2 methods, the RNA extracted using TRIzol® Reagent (Invitrogen) did not have acceptable A260/A280 and A260/A230 ratios and did not have ideal concentrations. Agarose gel electrophoresis showed a strong DNA band for all of the Concert™ method extractions but not for the TRIzol® and TRIzol®/ice methods. The TRIzol® method resulted in smears during electrophoresis. Due to its low levels of DNA contamination, ideal A260/A280 and A260/A230 ratios and superior sample integrity, RNA from the TRIzol®/ice method was used for reverse transcription-polymerase chain reaction (RT-PCR), and the resulting amplicons were highly similar. We conclude that TRIzol®/ice is the preferred method for RNA extraction for P. edulis leaves.
extração de RNA, Plant culture, low temperature, baixa temperatura, RNA extraction, Passiflora edulis, Concert™, SB1-1110, TRIzol®
extração de RNA, Plant culture, low temperature, baixa temperatura, RNA extraction, Passiflora edulis, Concert™, SB1-1110, TRIzol®
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
