Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pohang University of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-Efficient Hash Chain Traversal

Authors: Yum, DH; Seo, JW; Lee, PJ;

Energy-Efficient Hash Chain Traversal

Abstract

A hash chain H for a one-way hash function h(·) is a sequence of hash values , where vn is a secret value, vi is generated by vi=h(vi+1) for i=n-1,n-2,...,0 an0d v0 is a public value. A hash chain traversal algorithm T computes and outputs the hash chain H, returning vi in time period (called round) i for 1≤i≤n. At the outset, T stores carefully chosen κ hash values (including vn) of H in κ memory storages (called pebbles). In round i, T performs two kinds of computations; online computation to output vi with hash values stored in pebbles and then preparatory computation to rearrange pebbles for future rounds. Usually, the online computation consists of either one or zero hash function evaluation, while the preparatory computation occupies most of the computational cost. The design goal of previous hash chain traversal algorithms was to minimize the worst case computational cost per round with minimal pebbles. On the contrary, we study a different optimization problem of minimizing the average case computational cost. Our proposed traversal algorithm reduces the average case computational cost by 20-30% and the online computational cost by 23-33% for parameters of practical interest. For example, if the proposed algorithm is implemented on battery-powered devices, the battery lifetime can be increased by 20-30%.

Related Organizations
Keywords

efficient traversal, cryptography, hash chain

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green