Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Proceedingsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MRS Proceedings
Article . 2001 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

Polymeric Nanoscale All-Solid State Battery

Authors: Steven E. Bullock; Peter Kofinas;

Polymeric Nanoscale All-Solid State Battery

Abstract

AbstractThe advent of polymer electrolytes has provided a promising route to an all solid-state polymer battery. Such a battery would have greater safety, without potential discharge of liquid or gel electrolyte. Current battery configurations typically involve a metal anode, a solvent-plasticized polyelectrolyte, such as poly (ethylene oxide) (PEO), and a composite cathode. We have synthesized an A/B/C triblock copolymer which could have potential use as an all-solid state nanoscale polymer lithium battery. The polymeric battery was synthesized with an anode, electrolyte and cathode by synthesizing an A/B/C triblock copolymer whose microphase separation would form lamellar domains. These nanodomains contain cobalt oxide, a derivative of PEO synthesized by ring opening metathesis polymerization, and a spinel phase LiMn2O4 as the anode, electrolyte and cathode material, respectively. The first block contains cobalt oxide that stores lithium ion in a novel electrochemical reaction that allows use in a battery configuration. The second block is polyethylene oxide derived from an unsaturated crown ether, and is used for its high ionic conductivity. The third block contains LiMn2O4, which is currently being investigated as a potential cathode material because of its low toxicity and ease of preparation. The nanometer size domains in the battery can be used in unique applications in microelectronics. In addition, such size scale allows use of the battery in discrete circuits, reducing the amount of wiring necessary in conventional battery configurations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!