
AbstractBoron nitride nanotubes (BN-NTs) were synthesized in “mass” quantities (∼0.6 g/h) using a continuous CO2 laser ablation reactor described in the literature [1]. High-resolution electron microscopy (HRTEM) analyses have shown the nanotubes to be organized in “ropes” comprising ∼10 tubes. Analysis of HRTEM images indicate that the majority of the tubes are zig-zag. The chemical composition of the tubes was confirmed using electron energy loss spectroscopy (EELS) analysis, which also determined that nanoparticles terminating tube ends were composed of pure boron covered by BN fullerene-like “cages”. The growth mechanism of the nanotubes seems to be “root-based” with tubes growing from boron nanoparticles dispersed throughout the samples; the non-particle-terminated ends of the tubes exhibit flat “caps” characteristic of BN-NTs [2].
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
