
handle: 11336/75505
Nuclei colliding at energies in the MeV’s break into fragments in a process that resembles a liquid-to-gas phase transition of the excited nuclear matter. If this is the case, phase changes occurring near the critical point should yield a “droplet” mass distribution of the form ≈A −T, with T (a critical exponent universal to many processes) within 2≤T≤3. This critical phenomenon, however, can be obscured by the finiteness in space of the nuclei and in time of the reaction. With this in mind, this work studies the possibility of having critical phenomena in small “static” systems (using percolation of cubic and spherical grids), and on small “dynamic” systems (using molecular dynamics simulations of nuclear collisions in two and three dimensions). This is done investigating the mass distributions produced by these models and extracting values of critical exponents. The specific conclusion is that the obtained values of T are within the range expected for critical phenomena, i.e. around 2.3, and the grand conclusion is that phase changes and critical phenomena appear to be possible in small and fast breaking systems, such as in collisions between heavy ions.
Critical Phenomena, https://purl.org/becyt/ford/1.3, Percolation, Multi-Fragmentation, https://purl.org/becyt/ford/1, Heavy-Ion Reactions
Critical Phenomena, https://purl.org/becyt/ford/1.3, Percolation, Multi-Fragmentation, https://purl.org/becyt/ford/1, Heavy-Ion Reactions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
