Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2003
License: CC BY NC SA
Data sources: CONICET Digital
Acta Physica Hungarica
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Critical Exponent of Nuclear Fragmentation

Authors: Barrañón, A.; Cardenas, Rodrigo; Dorso, Claudio Oscar; López, J.A.;

The Critical Exponent of Nuclear Fragmentation

Abstract

Nuclei colliding at energies in the MeV’s break into fragments in a process that resembles a liquid-to-gas phase transition of the excited nuclear matter. If this is the case, phase changes occurring near the critical point should yield a “droplet” mass distribution of the form ≈A −T, with T (a critical exponent universal to many processes) within 2≤T≤3. This critical phenomenon, however, can be obscured by the finiteness in space of the nuclei and in time of the reaction. With this in mind, this work studies the possibility of having critical phenomena in small “static” systems (using percolation of cubic and spherical grids), and on small “dynamic” systems (using molecular dynamics simulations of nuclear collisions in two and three dimensions). This is done investigating the mass distributions produced by these models and extracting values of critical exponents. The specific conclusion is that the obtained values of T are within the range expected for critical phenomena, i.e. around 2.3, and the grand conclusion is that phase changes and critical phenomena appear to be possible in small and fast breaking systems, such as in collisions between heavy ions.

Keywords

Critical Phenomena, https://purl.org/becyt/ford/1.3, Percolation, Multi-Fragmentation, https://purl.org/becyt/ford/1, Heavy-Ion Reactions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
Green