<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract We prove completeness, interpolation, decidability and an omitting types theorem for certain multi-dimensional modal logics where the states are not abstract entities but have an inner structure. The states will be sequences. Our approach is algebraic addressing varieties generated by complex algebras of Kripke semantics for such logics. The algebras dealt with are common cylindrification free reducts of cylindric and polyadic algebras. For finite dimensions, we show that such varieties are finitely axiomatizable, have the super amalgamation property, and that the subclasses consisting of only completely representable algebras are elementary, and are also finitely axiomatizable in first order logic. Also their modal logics have an N P complete satisfiability problem. Analogous results are obtained for infinite dimensions by replacing finite axiomatizability by finite schema axiomatizability.
FOS: Mathematics, Mathematics - Logic, Logic (math.LO)
FOS: Mathematics, Mathematics - Logic, Logic (math.LO)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |