Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electronic Archive o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
System Research in Energy
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methods and algorithms of swarm intelligence for the problems of nonlinear regression analysis and optimization of complex processes, objects, and systems: review and modification of methods and algorithms

Authors: Vladyslav Khaidurov; Vadym Tatenko; Mykyta Lytovchenko; Tamara Tsiupii; Tetiana Zhovnovach;

Methods and algorithms of swarm intelligence for the problems of nonlinear regression analysis and optimization of complex processes, objects, and systems: review and modification of methods and algorithms

Abstract

The development of high-speed methods and algorithms for global multidimensional optimization and their modifications in various fields of science, technology, and economics is an urgent problem that involves reducing computing costs, accelerating, and effectively searching for solutions to such problems. Since most serious problems involve the search for tens, hundreds, or thousands of optimal parameters of mathematical models, the search space for these parameters grows non-linearly. Currently, there are many modern methods and algorithms of swarm intelligence that solve today's scientific and applied problems, but they require modifications due to the large spaces of searching for optimal model parameters. Modern swarm intelligence has significant potential for application in the energy industry due to its ability to optimize and solve complex problems. It can be used to solve scientific and applied problems of optimizing energy consumption in buildings, industrial complexes, and urban systems, reducing energy losses, and increasing the efficiency of resource use, as well as for the construction of various elements of energy systems in general. Well-known methods and algorithms of swarm intelligence are also actively applied to forecast energy production from renewable sources, such as solar and wind energy. This allows better management of energy sources and planning of their use. The relevance of modifications of methods and algorithms is due to the issues of speeding up their work when solving machine learning problems, in particular, in nonlinear regression models, classification, and clustering problems, where the number of observed data can reach tens and hundreds of thousands or more. The work considers and modifies well-known effective methods and algorithms of swarm intelligence (particle swarm optimization algorithm, bee optimization algorithm, differential evolution method) for finding solutions to multidimensional extremal problems with and without restrictions, as well as problems of nonlinear regression analysis. The obtained modifications of the well-known classic effective methods and algorithms of swarm intelligence, which are present in the work, effectively solve complex scientific and applied tasks of designing complex objects and systems. A comparative analysis of methods and algorithms will be conducted in the next study on this topic. Keywords: optimization, swarm intelligence, mathematical modelling, nonlinear regression, complex objects and systems.

Keywords

nonlinear regression, swarm intelligence, complex objects and systems, оптимізація, складні об’єкти та системи, mathematical modelling, ройовий інтелект, математичне моделювання, optimization, нелінійна регресія

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green