
AbstractMitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans. Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.
Organelle Biogenesis, 1.1 Normal biological development and functioning, Citric Acid Cycle, electron transport chain, free radicals, biogenesis, Mitochondria, mitochondrial morphology, Electron Transport, Underpinning research, WormBook, Genetics, Animals, Generic health relevance, quality control, respiration, Developmental Biology
Organelle Biogenesis, 1.1 Normal biological development and functioning, Citric Acid Cycle, electron transport chain, free radicals, biogenesis, Mitochondria, mitochondrial morphology, Electron Transport, Underpinning research, WormBook, Genetics, Animals, Generic health relevance, quality control, respiration, Developmental Biology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 328 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
