
We shall investigate the asymptotic behavior of the extended resolvent R(s) of the Dirac operator as |s| increases to infinity, where s is a real parameter. It will be shown that the norm of R(s), as a bounded operator between two weighted Hilbert spaces of square integrable functions on the 3-dimensional Euclidean space, stays bounded. Also we shall show that R(s) converges 0 strongly as |s| increases to infinity. This result and a result of Yamada [15] are combined to indicate that the extended resolvent of the Dirac operator decays much more slowly than those of Schroedinger operators.
28 pages, no figures
extended resolvents, Mathematics - Spectral Theory, General theory of partial differential operators, Scattering theory for PDEs, Dirac operators, FOS: Mathematics, Quantum scattering theory, Schrödinger operators, Spectral Theory (math.SP)
extended resolvents, Mathematics - Spectral Theory, General theory of partial differential operators, Scattering theory for PDEs, Dirac operators, FOS: Mathematics, Quantum scattering theory, Schrödinger operators, Spectral Theory (math.SP)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
