Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

White and beige adipocytes: are they metabolically distinct?

Authors: Diane M Sepa-Kishi; Rolando B. Ceddia;

White and beige adipocytes: are they metabolically distinct?

Abstract

Abstract The white adipose tissue (WAT) exhibits great plasticity and can undergo “browning” and acquire features of the brown adipose tissue (BAT), which takes place following cold exposure, chronic endurance exercise or β3-adrenergic stimulation. WAT that underwent browning is characterized by the presence of “beige” adipocytes, which are morphologically similar to brown adipocytes, express uncoupling protein 1 (UCP1) and are considered thermogenically competent. Thus, inducing a BAT-like phenotype in the WAT could promote energy dissipation within this depot, reducing the availability of substrate that would otherwise be stored in the WAT. Importantly, BAT in humans only represents a small proportion of total body mass, which limits the thermogenic capacity of this tissue. Therefore, browning of the WAT could significantly expand the energy-dissipating capacity of the organism and be of therapeutic value in the treatment of metabolic diseases. However, the question remains as to whether WAT indeed changes its metabolic profile from an essentially fat storage/release compartment to an energy dissipating compartment that functions much like BAT. Here, we discuss the differences with respect to thermogenic capacity and metabolic characteristics between white and beige adipocytes to determine whether the latter cells indeed significantly enhance their capacity to dissipate energy through UCP1-mediated mitochondrial uncoupling or by the activation of alternative UCP1-independent futile cycles.

Related Organizations
Keywords

Adipose Tissue, White, Lipolysis, Animals, Humans, Thermogenesis, Adipocytes, Beige, Energy Metabolism, Uncoupling Protein 1, Mitochondria

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?