<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract. We prove that the reduced holonomy group of a complete smooth solution to the Ricci flow of uniformly bounded curvature cannot spontaneously contract within the lifetime of the solution. It follows then, from an earlier result of Hamilton, that the holonomy is exactly preserved by the equation. In particular, a solution to the Ricci flow may be Kähler or locally reducible at t = T $t= T$ if and only if the same is true of g ( t ) $g(t)$ at times t ≤ T $t\le T$ .
Mathematics - Differential Geometry, Differential Geometry (math.DG), 58J35, 35K55, FOS: Mathematics
Mathematics - Differential Geometry, Differential Geometry (math.DG), 58J35, 35K55, FOS: Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |