
arXiv: 1802.03611
To determine that two given undirected graphs are isomorphic, we construct for them auxiliary graphs, using the breadth-first search. This makes capability to position vertices in each digraph with respect to each other. If the given graphs are isomorphic, in each of them we can find such positionally equivalent auxiliary digraphs that have the same mutual positioning of vertices. Obviously, if the given graphs are isomorphic, then such equivalent digraphs exist. Proceeding from the arrangement of vertices in one of the digraphs, we try to determine the corresponding vertices in another digraph. As a result we develop the algorithm for constructing a bijective mapping between vertices of the given graphs if they are isomorphic. The running time of the algorithm equal to $O(n^5)$, where $n$ is the number of graph vertices.
17 pages, 11 figures
FOS: Computer and information sciences, 05C85, 68Q17, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, 05C85, 68Q17, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
