Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

XCQ : a framework for XML compression and querying

Authors: Lam, Wai-Yeung;

XCQ : a framework for XML compression and querying

Abstract

XML has already become the defacto standard for specifying and exchanging data on the Web. However, XML is by nature verbose and thus XML documents are usually large in size. The size problem of XML documents usually hinders their practical usage, since it substantially increases the costs of storing, processing and exchanging data. As XML documents are stored in plain-text format, a promising way to relieve the size problem is to compress the XML data using existing text compression technologies, such as gzip and bzip. However, due to the fact that an XML document presents its structure and data in a self-describing manner through its associated DTD and the tags in the document, respectively, one can make use of this knowledge to help facilitate better compression as well as generate more usable compressed data to support querying. This thesis proposes the XML Compression and Querying (XCQ) Framework, which is designed for XML compression and compressed XML querying. Herein we show that by utilizing the structural information from the input XML document and its associated DTD during the compression process, XCQ can achieve better compression ratio than that of gzip as well as generate more usable compressed data that is able to be queried without running a full decompression. This thesis presents in detail the techniques developed for implementing the XCQ Framework. These techniques include: (1) the DTD Tree and SAX Event Stream Parsing (DSP), which is designed for efficient compression of valid XML documents without involving user expertise, (2) the Partitioned Path-Based Data Grouping (PPG) compressed document format, which supports querying over compressed XML data by performing partial decompression, (3) the Block Statistic Signature (BSS) indexing, which is designed for indexing block-oriented compressed data that aims at using minimal system resources, and (4) the access method that is used for realizing partial decompression when processing selection, structural, structure-based aggregation, and ...

Related Organizations
Keywords

Data compression (Computer science), 005, XML (Document markup language), Query languages (Computer science)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!