
Exposure to ultrafine combustion aerosols such as particulate matter (PM) from residential woodburning, forest fires, cigarette smoke, and traffic emission have been linked to adverse health outcomes. Excitation-emission matrix (EEM) spectroscopy presents a sensitive and cost-effective alternative for analysis of PM organic fraction. However, as with other analytical chemistry methods, the miniaturization is hindered by a solvent extraction step and a need for benchtop instrumentation. We present a methodology for collecting and in-situ analysis of airborne nanoparticles that eliminates labor-intensive sample preparation and miniaturizes the detection platform. Nanoparticles are electrostatically collected onto a transparent substrate coated with solid-phase (SP) solvent—polydimethylsiloxane (PDMS). The PM organic fraction is extracted into PDMS and analyzed in-situ , thus avoiding liquid-phase extraction. In the SP-EEM analysis, we evaluated external and internal excitation schemes. Internal excitation shows the lowest scattering interference but leads to signal masking from PDMS fluorescence for λ<250nm. The external excitation EEM spectra are dependent on the excitation light incident angle; ranges of 30–40° and 55–65° show the best results. SP-EEM spectra of woodsmoke and cigarette smoke samples are in good agreement with the EEM spectra of liquid-phase extracts. The SP-EEM technique can be used to develop wearable sensors for exposure assessments and environmental monitoring.
Aerosols, Science, Q, R, Spectrometry, Fluorescence, Medicine, Particulate Matter, Water Pollutants, Chemical, Research Article
Aerosols, Science, Q, R, Spectrometry, Fluorescence, Medicine, Particulate Matter, Water Pollutants, Chemical, Research Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
