Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2020
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2019
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heteroplasmy in the complete chicken mitochondrial genome

Authors: Yanqun Huang; Weiwei Lu; Jiefei Ji; Xiangli Zhang; Pengfei Zhang; Wen Chen;

Heteroplasmy in the complete chicken mitochondrial genome

Abstract

Chicken mitochondrial DNA is a circular molecule comprising ~16.8 kb. In this study, we used next-generation sequencing to investigate mitochondrial heteroplasmy in the whole chicken mitochondrial genome. Based on heteroplasmic detection thresholds at the 0.5% level, 178 cases of heteroplasmy were identified in the chicken mitochondrial genome, where 83% were due to nucleotide transitions. D-loop regionwas hot spot region for mtDNA heteroplasmy in the chicken since 130 cases of heteroplasmy were located in these regions. Heteroplasmy varied among intraindividual tissues with allele-specific, position-specific, and tissue-specific features. Skeletal muscle had the highest abundance of heteroplasmy. Cases of heteroplasmy at mt.G8682A and mt.G16121A were validated by PCR-restriction fragment length polymorphism analysis, which showed that both had low ratios of heteroplasmy occurrence in five natural breeds. Polymorphic sites were easy to distinguish. Based on NGS data for crureus tissues, mitochondrial mutation/heteroplasmy exhibited clear maternal inheritance features at the whole mitochondrial genomic level. Further investigations of the heterogeneity of the mt.A5694T and mt.T5718G transitions between generations using pyrosequencing based on pedigree information indicated that the degree of heteroplasmy and the occurrence ratio of heteroplasmy decreased greatly from the F0 to F1 generations in the mt.A5694T and mt.T5718G site. Thus, the intergenerational transmission of heteroplasmy in chicken mtDNA exhibited a rapid shift toward homoplasmy within a single generation. Our findings indicate that heteroplasmy is a widespread phenomenon in chicken mitochondrial genome, in which most sites exhibit low heteroplasmy and the allele frequency at heteroplasmic sites changes significantly during transmission events. It suggests that heteroplasmy may be under negative selection to some degree in the chicken.

Related Organizations
Keywords

Polymorphism, Genetic, Genotype, Science, Q, R, High-Throughput Nucleotide Sequencing, DNA, Genome, Mitochondrial, Mutation, Medicine, Animals, Chickens, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold