
Bistability is considered wide-spread among bacteria and eukaryotic cells, useful e.g. for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schloegl model, using analytical calculations and stochastic spatio-temporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments) and fast protein diffusion (well mixing). Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition.
23 pages, 8 figures
Stochastic Processes, Quantitative Biology - Subcellular Processes, Science, Q, R, Proteins, Models, Theoretical, Diffusion, FOS: Biological sciences, Medicine, Thermodynamics, Subcellular Processes (q-bio.SC), Research Article, Signal Transduction
Stochastic Processes, Quantitative Biology - Subcellular Processes, Science, Q, R, Proteins, Models, Theoretical, Diffusion, FOS: Biological sciences, Medicine, Thermodynamics, Subcellular Processes (q-bio.SC), Research Article, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
