
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 2117/345152
Recent advances in nanofabrication technology now enable unprecedented control over 2D heterostructures, in which single- or few-atom thick materials with synergetic opto-electronic properties can be combined to develop next-generation nanophotonic devices. Precise control of light can be achieved at the interface between 2D metal and dielectric layers, where surface plasmon polaritons strongly confine electromagnetic energy. Here we reveal quantum and finite-size effects in hybrid systems consisting of graphene and few-atomic-layer noble metals, based on a quantum description that captures the electronic band structure of these materials. These phenomena are found to play an important role in the metal screening of the plasmonic fields, determining the extent to which they propagate in the graphene layer. In particular, we find that a monoatomic metal layer is capable of pushing graphene plasmons toward the intraband transition region, rendering them acoustic, while the addition of more metal layers only produces minor changes in the dispersion but strongly affects the lifetime. We further find that a quantum approach is required to correctly account for the sizable Landau damping associated with single-particle excitations in the metal. We anticipate that these results will aid in the design of future platforms for extreme light-matter interaction on the nanoscale.
21 pages, 15 figures, 73 references
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica, Atomic layer potential, :Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica [Àrees temàtiques de la UPC], Optoelectronics, Optoelectrònica
Condensed Matter - Materials Science, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica, Atomic layer potential, :Enginyeria de la telecomunicació::Telecomunicació òptica::Fotònica [Àrees temàtiques de la UPC], Optoelectronics, Optoelectrònica
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 28 | |
downloads | 39 |