
doi: 10.1364/oe.385137
pmid: 32225438
An adjustable slab-aberration compensator (ASAC) with the ability to compensate the large magnitude inherent wavefront aberrations in the slab width direction is proposed and experimentally demonstrated. The ASAC has a size of 130mm×45mm (effective aperture of 75mm×28mm) and 11 actuators along the length with a contact spacing of 8 mm. The design is optimized by simulations in terms of the mirror’s coupling coefficient with the contact areas, mechanical properties of the driving units, and the mirror thickness. The initial surface figure of the ASAC has PV and RMS values of 55 nm and 10 nm, and the dynamic range is 30 µm. In our experiments, a 20 kW Nd: YAG quasi-continuous wave (QCW) slab laser is further compensated by the ASAC system. The beam quality increases from 15× to 3.5× diffraction limit at 20 kW output after correction. Besides, the proposed ASAC can maintain the surface shape after power shutdown and have good thermal stability. The temperature rise of the ASAC is less than 7 °C in the 20 kW laser correction experiment.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
