
A silicon nitride micro-ring resonator with a loaded Q factor of 1.4 × 106 at 780 nm wavelength is demonstrated on silicon substrates. This is due to the low propagation loss waveguides achieved by optimization of waveguide sidewall interactions and top cladding refractive index. Potential applications include laser frequency stabilization allowing for chip-scale atomic systems targeting the 87Rb atomic transition at 780.24 nm. The temperature dependent wavelength shift of the micro-ring was determined to be 13.1 pm/K indicating that a minimum temperature stability of less than ±15 mK is required for such devices for wavelength locking applications. If a polyurethane acrylate top cladding of an optimized thickness is used then the micro-ring could effectively be athermal, resulting in reduced footprint, power consumption, and cost of potential devices.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
