
Birefringence imaging, including polarization sensitive optical coherence tomography (PS-OCT), can provide valuable insight into the microscopic structure and organization of many biological tissues. In this paper, we report on a method to fabricate tissue-like birefringence phantoms for such imaging modalities. We utilize the photo-elastic effect, wherein birefringence is induced by stretching a polymer sample after heating it above its glass-transition temperature. The cooled samples stably exhibit homogeneous birefringence, and were assembled into phantoms containing multiple well-defined regions of distinct birefringence. We present planar slab phantoms for microscopy applications and cylindrical phantoms for catheter-based imaging and demonstrate quantitative analysis of the birefringence within individual regions of interest. Birefringence phantoms enable testing, validating, calibrating, and improving PS-OCT acquisition systems and reconstruction strategies.
Polarimetric Imaging, Optical Coherence Tomography
Polarimetric Imaging, Optical Coherence Tomography
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
