Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal of Mathematics
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hausdorff Dimension of Caloric Measure

Authors: Badger, Matthew; Genschaw, Alyssa;

Hausdorff Dimension of Caloric Measure

Abstract

abstract: We examine caloric measures $\omega$ on general domains in $\RR^{n+1}=\RR^n\times\RR$ (space $\times$ time) from the perspective of geometric measure theory. On one hand, we give a direct proof of a consequence of a theorem of Taylor and Watson (1985) that the lower parabolic Hausdorff dimension of $\omega$ is at least $n$ and $\omega\ll\Haus^n$. On the other hand, we prove that the upper parabolic Hausdorff dimension of $\omega$ is at most $n+2-\beta_n$, where $\beta_n>0$ depends only on $n$. Analogous bounds for harmonic measures were first shown by Nevanlinna (1934) and Bourgain (1987). Heuristically, we show that the \emph{density} of obstacles in a cube needed to make it unlikely that a Brownian motion started outside of the cube exits a domain near the center of the cube must be chosen according to the ambient dimension. In the course of the proof, we give a caloric measure analogue of Bourgain's alternative: for any constants $0<\epsilon\ll_n \delta<1/2$ and closed set $E\subset\RR^{n+1}$, either (i) $E\cap Q$ has relatively large caloric measure in $Q\setminus E$ for every pole in $F$ or (ii) $E\cap Q_*$ has relatively small $\rho$-dimensional parabolic Hausdorff content for every $n<\rho\leq n+2$, where $Q$ is a cube, $F$ is a subcube of $Q$ aligned at the center of the top time-face, and $Q_*$ is a subcube of $Q$ that is close to, but separated backwards-in-time from $F$: \begin{gather*} Q=(-1/2,1/2)^n\times (-1,0),\quad F=[-1/2+\delta,1/2-\delta]^n\times[-\epsilon^2,0),\\[2pt] \text{and }Q_*=[-1/2+\delta,1/2-\delta]^n\times[-3\epsilon^2,-2\epsilon^2]. \end{gather*} Further, we supply a version of the strong Markov property for caloric measures.

Keywords

Mathematics - Analysis of PDEs, Mathematics - Classical Analysis and ODEs, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Primary 31B15, Secondary 28A75, 28A78, 35K05, 42B37, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green