Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Combustion of PVC

Authors: Michael M. O'Mara;
Abstract

Abstract - The thermal decomposition and combustion mechanisms of PVC are examined. With respect to thermal decomposition, the results of a deuterium labeling (d-PVC) study indicate that the mechanism of benzene formation involves an intramolecular cyclization step rather than an intermolecular Diels-Alder condensation step. With respect to combustion, the evolution and ultimate fate of hydrogen chloride and other combustion gases generated under NBS Smoke Density Chamber conditions is described. The combustion of rigid PVC, flexible PVC and rigid PVC-wood mixtures has been carried out. It was observed that under smoldering conditions, rigid PVC evolves combustion gases in a sequence that agrees with the current mechanism of decomposition. It was discovered that under flaming conditions, the concentration of hydrogen chloride in the NBS Smoke Density Chamber rapidly decreases and that the decay follows first order kinetics. Analytical data is presented which shows that this decay is due to HCl condensation on the chamber walls and is not an experimental artifact. The data from these experiments indicate that water generated during combustion plays a key role in this condensation. Recent data published on the exposure of test animals to the combustion gases from PVC are reviewed in light of the above findings.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!