
doi: 10.13182/nse13-3
This paper describes the built-in calculation routines in the reactor physics code Serpent 2 that provide a novel method for solving the coupled problem of the power distribution, temperature distribution, and material property distributions in nuclear fuel elements. All of the coupled distributions are solved during a single simulation with no coupling to external codes. The temperature feedback system consists of three separate built-in parts: an explicit treatment of the thermal motion of target nuclides during the transport calculation, an internal analytic radial temperature profile solver, and internal material property correlations. The internal structure and couplings of the calculation routines are described in detail, after which the results of an assembly-level problem are presented to demonstrate the capabilities and functionality of the system.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
