
We explore the combination theorem for a group G splitting as a graph of relatively hyperbolic groups. Using the fine graph approach to relative hyperbolicity, we find short proofs of the relative hyperbolicity of G under certain conditions. We then provide a criterion for the relative quasiconvexity of a subgroup H depending on the relative quasiconvexity of the intersection of H with the vertex groups of G. We give an application towards local relative quasiconvexity.
20F06, Mathematics - Geometric Topology, FOS: Mathematics, Geometric Topology (math.GT), Group Theory (math.GR), Mathematics - Group Theory
20F06, Mathematics - Geometric Topology, FOS: Mathematics, Geometric Topology (math.GT), Group Theory (math.GR), Mathematics - Group Theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
