Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao University of Galway...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.13025/16...
Doctoral thesis . 2015
Data sources: Datacite
versions View all 2 versions
addClaim

Ship Borne Direct Eddy Covariance Flux Measurements

Authors: Landwehr, Sebastian Johannes Heinz-Josef;

Ship Borne Direct Eddy Covariance Flux Measurements

Abstract

Ship borne direct eddy covariance flux measurements of momentum, heat (latent and sensible), and the trace gas CO2, were conducted during three open ocean experiments. The methods for data analysis and interpretation were adapted from the literature, and reviewed carefully. Two major sources of measurement errors were studied in detail: the air-flow distortion by the platform superstructure and the cross-sensitivity of the CO2 signal to water vapour. For both topics a revision of the treatment, as suggested in the literature, was found necessary. Air-flow distortion can lead to a tilt of the wind vector as well as acceleration of the wind speed. Eddy covariance measurements are additionally affected by the platform motion. The classic approach is to first correct for the platform motion and thereafter rotate the wind vector into the mean flow. For moving ships, this causes an over-estimation of the tilt, because the flow distortion-induced vertical velocity is proportional to the relative wind speed. The overestimated tilt leads to biased flux estimates. This may explain the common observation that flux estimates from moving ships have lower quality than measurements taken on station. An alternative method is presented here, where the flow distortion-induced tilt is estimated from the wind speed measurements and applied after correcting for the platform motion, but before removing the ship's mean velocity. This significantly reduced the flow distortion error in the direct flux measurements. With respect to CO2, the flux measurements are affected by cross-sensitivities to water vapour, resulting in order-of-magnitude biases. Well established cause are (i) band-broadening and spectral overlap, and (ii) air density fluctuations. Both can be corrected. A further bias related to humidity fluctuations has recently been observed with the widely used CO2/H2O open-path sensors produced by LICOR, attributed to sea salt build-up and water films on the sensor optics. Two different approaches have been used: Miller et al. (2010) employed a membrane drier to physically eliminate 97% of the water vapour fluctuations in the sample air before it entered a closed-path gas analyser. Prytherch et al. (2010a) formulated the PKT (Peter K. Taylor) post-processing correction. Here these methods are compared using four closed-path analysers, two of which were positioned down-stream of membrane dryers. The CO2 fluxes from the dried analysers matched each other and were in general agreement with common parameterisations. The measurements from the un-dried sensors agreed only when the humidity flux was low and exhibited order-of magnitude biases otherwise. The PKT correction did not remove the bias. The results demonstrate the validity of measuring CO2 fluxes at pre-dried air and disprove the PKT correction.

Country
Ireland
Related Organizations
Keywords

Air-sea interaction, humidity bias, flux measurements, Motion Sensitivity, Humidity Bias, PKT, Buoy, Air-flow distortion, CO2, Co2, School of Physics, Gas Analyser, Eddy Covariance, Ship, Momentum Flux, LICOR

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!