Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Management Science
Article . 1983 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multivariate Stratified Sampling by Optimization

Multivariate stratified sampling by optimization
Authors: John M. Mulvey;

Multivariate Stratified Sampling by Optimization

Abstract

An important, recurring problem in statistics involves the determination of strata boundaries for use in stratified sampling. This paper describes a practical method for stratifying a population of observations based on optimal cluster analysis. The goal of stratification is constructing a partition such that observations within a stratum are homogeneous as defined by within-cluster variances for attributes that are deemed important, while observations between strata are heterogeneous. The problem is defined as a deterministic optimization model with integer variables and is solved by means of a subgradient method. Computational tests with several examples show that the within-strata variances and thus the accompanying standard errors can be substantially reduced. Since the proposed model strives to minimize standard error, it is applicable to situations where a precise sample is essential, for example, microeconomic simulation studies.

Related Organizations
Keywords

Numerical optimization and variational techniques, multivariate stratified sampling, subgradient optimization, Classification and discrimination; cluster analysis (statistical aspects), Sampling theory, sample surveys, Integer programming, Probabilistic methods, stochastic differential equations, sampling, statistics: cluster analysis, programming: integer algorithms, subgradient optimization [statistics], cluster analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!