Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Boston University: O...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Management Science
Article
Data sources: UnpayWall
Management Science
Article . 2020 . Peer-reviewed
Data sources: Crossref
SSRN Electronic Journal
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Token-Weighted Crowdsourcing

Authors: Brett Hemenway Falk; Gerry Tsoukalas; Gerry Tsoukalas;

Token-Weighted Crowdsourcing

Abstract

Blockchain-based platforms often rely on token-weighted voting (“τ-weighting”) to efficiently crowdsource information from their users for a wide range of applications, including content curation and on-chain governance. We examine the effectiveness of such decentralized platforms for harnessing the wisdom and effort of the crowd. We find that τ-weighting generally discourages truthful voting and erodes the platform’s predictive power unless users are “strategic enough” to unravel the underlying aggregation mechanism. Platform accuracy decreases with the number of truthful users and the dispersion in their token holdings, and in many cases, platforms would be better off with a “flat” 1/n mechanism. When, prior to voting, strategic users can exert effort to endogenously improve their signals, users with more tokens generally exert more effort—a feature often touted in marketing materials as a core advantage of τ-weighting—however, this feature is not attributable to the mechanism itself, and more importantly, the ensuing equilibrium fails to achieve the first-best accuracy of a centralized platform. The optimality gap decreases as the distribution of tokens across users approaches a theoretical optimum, which we derive, but tends to increase with the dispersion in users’ token holdings. This paper was accepted by Gabriel Weintraub, revenue management and market analytics.

Country
United States
Related Organizations
Keywords

330

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    89
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
89
Top 1%
Top 10%
Top 10%
Green
bronze